
ECS Compose-X Documentation
Release 0.14.4

John Preston

Apr 22, 2022

ECS COMPOSE-X

1 ECS Compose-X 1

2 Requirements 5

3 Installation 7

4 ECS Compose-X as an AWS CloudFormation Macro 9

5 Contributing 13

6 AWS ECS (and AWS Fargate) Features 17

7 Docker Compose 21

8 Docker AWS ECS Plugin 25

9 AWS IAM Policies from AWS SAM 27

10 services 29

11 volumes 31

12 secrets 35

13 networks 39

14 logging 41

15 deploy 43

16 x-scaling 49

17 x-iam 51

18 x-network 53

19 x-logging 57

20 x-xray 59

21 x-codeguru-profiler 61

22 Common syntax for x-resources 65

i

23 x-dynamodb 69

24 x-rds 73

25 x-docdb 79

26 x-elastic_cache 85

27 x-s3 89

28 x-efs 97

29 x-appmesh 101

30 x-dns 109

31 x-elbv2 111

32 x-acm 119

33 x-kinesis 121

34 x-sqs 125

35 x-sns 131

36 x-events 133

37 x-kms 135

38 x-vpc 139

39 x-cluster 143

40 x-alarms 145

41 spot_config 149

42 Docker ECS Plugin support 151

43 History 155

44 Extras 167

45 Philosophy 175

46 What does ECS Compose-X do differently? Long version 177

47 Why did I create ECS Compose-X? 179

48 Why am I not using AWS CDK? 181

49 Implementing least privileges at the heart of ECS Compose-X 183

50 Contributors 185

51 Credits 187

52 Indices and tables 189

ii

CHAPTER

ONE

ECS COMPOSE-X

1.1 Manage, Configure and deploy your applications/services and
AWS resources from your docker-compose definitions

1.1.1 Why use ECS Compose-X?

As a developer, working locally is a crucial part of your day to day work, and docker-compose allows you to do just
that, for simple services as well as very complex structures.

Your prototype works, and you want to deploy to AWS. But what about IAM ? Networking ? Security ? Configuration
?

Using ECS Compose-X, you keep your docker-compose definitions as they are, add the AWS services you have chosen
as part of that definition, such as ELB, RDS/DynamodDB Databases etc, and the program will automatically generate
all the AWS CloudFormation templates required to deploy all your services.

It automatically takes care of network access requirements and IAM permissions, following best practices.

1.1.2 Installation

ECS Compose-X can be used as a CLI ran locally, in CICD pipelines, or as an AWS CloudFormation macro, allowing
you to use your Docker Compose files directly in CloudFormation!

On AWS using AWS CloudFormation Macro

You can now deploy the CloudFormation macro to your AWS Account using AWS Serverless Application Repository
(SAR).

Deploy it in your account today

Find out how to use ECS Compose-X in AWS here

1

https://pypi.python.org/pypi/ecs_composex
https://github.com/compose-x/ecs_composex/blob/master/LICENSE
https://pypi.org/project/black/
https://docs.pytest.org/en/latest/contents.html
https://behave.readthedocs.io/en/latest/
https://sonarcloud.io/dashboard?id=compose-x_ecs_composex
https://serverlessrepo.aws.amazon.com/applications/eu-west-1/518078317392/compose-x
https://blog.compose-x.io/posts/use-your-docker-compose-files-as-a-cloudformation-template/index.html

ECS Compose-X Documentation, Release 0.14.4

Via pip

pip install ecs_composex

1.1.3 CLI Usage

usage: ecs-compose-x [-h] {up,render,create,config,init,version} ...

positional arguments:
{up,render,create,config,init,version}

Command to execute.
up Generates & Validates the CFN templates,

Creates/Updates stack in CFN
render Generates & Validates the CFN templates locally. No

upload to S3
create Generates & Validates the CFN templates locally.

Uploads files to S3
config Merges docker-compose files to provide with the final

compose content version
init Initializes your AWS Account with prerequisites

settings for ECS
version ECS Compose-X Version

optional arguments:
-h, --help show this help message and exit

Examples

Render all your CFN templates from your docker compose and extension files
ecs-compose-x render --format yaml -n my-awesome-app -f docker-compose.yml -f aws.yml
→˓-d outputs

Deploy / Update your application to AWS
ecs-compose-x up --format yaml -n my-awesome-app -f docker-compose.yml -f aws.yml -d
→˓outputs

1.1.4 How is it different ?

There are a lot of similar tools out there, including published by AWS. So here are a few of the features that we think
could be of interest to you.

Modularity / “Plug & Play”

The majority of people who are going to use ECS Compose-X on a daily basis should be developers who need to have
an environment of their own and want to quickly iterate over it.

However, it is certainly something that Cloud Engineers in charge of the AWS accounts etc. would want to use to
make their own lives easy too.

In many areas, you as the end-user of Compose-X will already have infrastructure in place: VPC, DBs and what
not. So as much as possible, you will be able in Compose-X to define Lookup sections which will find your existing
resources, and map these to the services.

2 Chapter 1. ECS Compose-X

ECS Compose-X Documentation, Release 0.14.4

Built for AWS Fargate

However the original deployments and work on this project was done using EC2 instances (using SpotFleet), every-
thing is now implemented to work on AWS Fargate First (2020-06-06).

That said, all features that can be supported with EC2 instances are available to you with ECS Compose-X, which,
will simply disable such settings when deployed on top of AWS Fargate.

Attributes auto-correct

A fair amount of the time, deployments via AWS CloudFormation, Ansible and other IaC will fail because of incom-
patible settings. This happened a number of times, with a lot of different AWS Services.

Whilst giving you the ability to use all properties of AWS CloudFormation objects, whenever possible, ECS Compose-
X will understand how two services are connected and will auto-correct the settings for you.

For example, if you set the Log retention to be 42 days, which is invalid, it will automatically change that to the closest
valid value (here, 30).

1.1.5 Credits

This package would not have been possible without the amazing job done by the AWS CloudFormation team! This
package would not have been possible without the amazing community around Troposphere! This package was created
with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1.1. Manage, Configure and deploy your applications/services and AWS resources from your
docker-compose definitions

3

https://github.com/cloudtools/troposphere
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

ECS Compose-X Documentation, Release 0.14.4

4 Chapter 1. ECS Compose-X

CHAPTER

TWO

REQUIREMENTS

2.1 AWS Account configuration

2.1.1 IAM Permissions to execute ECS Compose-X

Since ECS Compose-X adds more and more features, we highly recommend to use the AWS Managed policy
arn:aws:iam:aws::policy/ReadOnlyAccess.

Additionally, you will need to use all the features and push your files to S3

Listing 1: ECS Compose-X specific permissions

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "AllowFullCloudFormationAccess",
"Effect": "Allow",
"Resource": [

"*"
],
"Action": [

"cloudformation:*"
]

},
{

"Sid": "S3BucketObjectsAccess",
"Effect": "Allow",
"Resource": [

"arn:aws:s3:::${BucketName}/*"
],
"Action": [

"s3:PutObject"
]

},
{

"Sid": "S3BucketAccess",
"Effect": "Allow",
"Resource": [

"arn:aws:s3:::${BucketName}"
],
"Action": [

"s3:CreateBucket",

(continues on next page)

5

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

"s3:ListBucket"
]

}
]

}

2.1.2 ECS Settings

Because of my adhesion to using the Cloud Provider’s tools for monitoring, logging, etc, some features and options
are enabled and you would get CloudFormation complain about account level settings not being enabled.

Depending on how you are setting up your AWS account(s) you might have to activate these settings if you haven’t
already.

Note: It is important that you enable AWS VPC Trunking to allow each service tasks to run within the same Secu-
rityGroup and use the extended number of ENIs per instance. Reference: Container ENI Announcement: AWS VPC
mode

ECS Account settings can be found at https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
ecs-account-settings.html

• ECS - VPC Trunking

• ECS Extended logs and monitoring

Tip: You can now simply run ecs-composex init in order to do all of the following and create your default S3 bucket
for your CFN templates

ecs-composex init

Deploy manually

aws ecs put-account-setting-default --name awsvpcTrunking --value enabled
aws ecs put-account-setting-default --name serviceLongArnFormat --value enabled
aws ecs put-account-setting-default --name taskLongArnFormat --value enabled
aws ecs put-account-setting-default --name containerInstanceLongArnFormat --value
→˓enabled
aws ecs put-account-setting-default --name containerInsights --value enabled

Hint: If you want to enable these settings for a specific IAM role you can assume yourself, from CLI you can use
aws ecs put-account-setting as opposed to aws ecs put-account-setting-default

aws ecs put-account-setting --name awsvpcTrunking --value enabled
aws ecs put-account-setting --name serviceLongArnFormat --value enabled
aws ecs put-account-setting --name taskLongArnFormat --value enabled
aws ecs put-account-setting --name containerInstanceLongArnFormat --value enabled
aws ecs put-account-setting --name containerInsights --value enabled

6 Chapter 2. Requirements

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html
https://aws.amazon.com/about-aws/whats-new/2019/06/Amazon-ECS-Improves-ENI-Density-Limits-for-awsvpc-Networking-Mode/
https://aws.amazon.com/about-aws/whats-new/2019/06/Amazon-ECS-Improves-ENI-Density-Limits-for-awsvpc-Networking-Mode/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html

CHAPTER

THREE

INSTALLATION

3.1 Deploy to your AWS Account

Region Lambda Layer based Macro Docker based Macro

us-east-1

eu-west-1

3.2 Stable release

3.2.1 From Pip

To install ECS-Compose-X, run this command in your terminal:

$ pip install ecs_composex

This is the preferred method to install ECS-Compose-X, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guides you through the process.

3.3 From sources

The sources for ECS-Compose-X can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/lambda-my-aws/ecs_composex

Or download the tarball:

$ curl -OJL https://github.com/lambda-my-aws/ecs_composex/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/lambda-my-aws/ecs_composex
https://github.com/lambda-my-aws/ecs_composex/tarball/master

ECS Compose-X Documentation, Release 0.14.4

8 Chapter 3. Installation

CHAPTER

FOUR

ECS COMPOSE-X AS AN AWS CLOUDFORMATION MACRO

4.1 Deploy to your AWS Account

Region Lambda Layer based Macro Docker based Macro

us-east-1

eu-west-1

4.2 Use with an existing docker-compose file

Say you already have a docker-compose file, and you would like to re-use it as a CloudFormation template. Well you
now can, with the CloudFormation macro for ECS Compose-X.

Now, AWS CloudFormation would try to evaluate everything in your current file, which has neither resources, or
parameters etc. So this is not a valid CloudFormation template.

For that to work though, all you have to do is add the following lines to your template

Transform:
- compose-x

From there, you can deploy your template from the AWS Console or from the CLI, for example, as shown below

CAPABILITIES="APABILITY_AUTO_EXPAND CAPABILITY_IAM CAPABILITY_NAMED_IAM"
aws cloudformation create-stack --template-body file://merged.yml --capabilities $
→˓{CAPABILITIES} --stack-name macro-demo

Hint: If you have multiple docker-compose files you wish to use, you can either do so via Use with files stored in
AWS S3 or simply merge the multiple YAML files together.

9

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml
https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml

ECS Compose-X Documentation, Release 0.14.4

4.3 Use with files stored in AWS S3

If you have multiple files and through CICD or otherwise, and decided to store them in AWS S3, you can then re-use
these files directly from there.

Fn::Transform:
Name: compose-x
Parameters:
ComposeFiles:
- s3://files.compose-x.io/docker-compose.yml
- s3://files.compose-x.io/aws.yml

BucketName: !Sub cfn-templates-${AWS::Region}-${AWS::AccountId}

4.4 Customize to your needs or requirements

The provided templates that will allow you to create the Lambda function for the macro and the macro itself, requires
an IAM role. Given all the features supported by ECS Compose-X you might want to customize the IAM permissions
of the IAM role assigned to the Lambda function.

The current IAM permissions are permissive to gather any information in the account in order to use the Lookup*
feature.

Using multi-account lookup

If you wish to use the Lookup feature, this is totally possible. Simply ensure that your docker-compose file indi-
cates which RoleArn to use for the specific lookup and adapt the IAM role of the Lambda function role to allow
sts:AssumeRole on that role ARN you are indicating.

4.5 CFN Macro Parameters

Listing 1: Parameters syntax reference

ComposeFiles: <list>
BucketName: <str>

4.5.1 ComposeFiles

The List of files you want to have compiled together in order to deploy your stack

Attention: Just like with the CLI, the order in which the files are composed together (first file least priority, last
highest priority) the order you list files in ComposeFiles matters in the same way.

10 Chapter 4. ECS Compose-X as an AWS CloudFormation Macro

ECS Compose-X Documentation, Release 0.14.4

4.5.2 BucketName

The name of the Bucket you have allowed the Lambda Function used for the CFN Macro to upload files to.

4.6 Current Limitations

4.6.1 environment files (env_files)

Because of the nature of the syntax requirement for env_files, these are not supported to work with the CFN macro, as
the files are not present in the local filesystem.

4.6. Current Limitations 11

ECS Compose-X Documentation, Release 0.14.4

12 Chapter 4. ECS Compose-X as an AWS CloudFormation Macro

CHAPTER

FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/compose-x/ecs_composex/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

5.1.4 Write Documentation

ECS-ComposeX could always use more documentation, whether as part of the official ECS-ComposeX docs, in doc-
strings, or even on the web in blog posts, articles, and such.

13

https://github.com/compose-x/ecs_composex/issues

ECS Compose-X Documentation, Release 0.14.4

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/lanbda-my-aws/ecs_composex/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up ecs_composex for local development.

1. Fork the ecs_composex repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/ecs_composex.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv ecs_composex
$ cd ecs_composex/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ make lint
$ make coverage

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

14 Chapter 5. Contributing

https://github.com/lanbda-my-aws/ecs_composex/issues

ECS Compose-X Documentation, Release 0.14.4

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests. Use make coverage to run both tests and coverage analysis.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst of the module.

5.4 Tips

To run a subset of tests:

$ make test
$ make coverage

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

AWS CodeBuild will build and run the tests

5.3. Pull Request Guidelines 15

ECS Compose-X Documentation, Release 0.14.4

16 Chapter 5. Contributing

CHAPTER

SIX

AWS ECS (AND AWS FARGATE) FEATURES

6.1 Container Definition

Property Name Supported Override Note/Extras Compose/X Property
Command Y Y service.command

Cpu Y Y Auto-defined if not set for Fargate service.deploy.resources
DependsOn Y Y When joined to same family, can depend on each other service.deploy.labels.ecs.task.family service.deploy.labels.ecs.depends.condition
DisableNetworking N N N/A
DnsSearchDomains N N Not supported with AWS Fargate
DnsServers N N Not supported with AWS Fargate
DockerLabels N Y Will be added in future version
DockerSecurityOptions N N Not supported with AWS Fargate
EntryPoint Y Y service.entrypoint
Environment Y Y service.environment
EnvironmentFiles Y Y files automatically copied from local to AWS S3 service.env_file
Essential Y Y Automatically determined based on other deploy labels
ExtraHosts N N Not supported with AWS Fargate
FirelensConfiguration N N
HealthCheck Y Y Full docker-compose support with commands. Separate healcheck with ELBv2 service.healthcheck
Hostname Y Y Disabled with AWS Fargate
Image Y Y service.image
Interactive N N
Links N N Not supported with awsvpc network
LinuxParameters N N
LogConfiguration Y Y Full AWS CloudWatch support service.logging service.x-logging
Memory Y Y Auto-defined if not set for Fargate service.deploy.resources
MemoryReservation service.deploy.resources
MountPoints Y Y service.volumes
Name Y Y Generated by CFN service.name
PortMappings Y Y Full support. Overrides to awsvpc for network service.ports
Privileged N N Not supported with AWS Fargate
PseudoTerminal N N
ReadonlyRootFilesystem N N
RepositoryCredentials Y Y service.x-aws-pull_policy
ResourceRequirements N N
Secrets Y Y Strongly automated for RDS and others secrets.x-secrets
StartTimeout N N

continues on next page

17

ECS Compose-X Documentation, Release 0.14.4

Table 1 – continued from previous page
Property Name Supported Override Note/Extras Compose/X Property
StopTimeout N N
SystemControls N N
Ulimits Y Y Automatically disable non AWS Fargate supported service.ulimits
User Y Y Expects IDs as docker-compose does service.user
VolumesFrom N N To be implemented
WorkingDirectory N N

6.2 Task Definition

Property Name Supported Override Note/Extras Compose/X Prop-
erty

ContainerDefinitions Y Y Strictly generated
by Compose-X

services

Cpu Y Y Automatic value for
Fargate based on
service.resources

deploy.resources de-
ploy

ExecutionRoleArn Y Y Strictly generated
by Compose-X

x-iam

Family Y Y Uses service name
or uses label

deploy.labels.ecs.task.family
labels

InferenceAccelerators N N
IpcMode N N
Memory Y Y

Auto computed for AWS Fargate
based on de-
ploy.resources

deploy.resources

NetworkMode Y N Always awsvpc
PidMode N N Not supported in

Fargate
PlacementConstraints N N Not applicable to

Fargate
ProxyConfiguration Y Y See x-appmesh x-appmesh
RequiresCompatibilitiesY N EC2 and Fargate al-

ways defined
Tags Y Y Generated by

Compose-X
See x-tags

18 Chapter 6. AWS ECS (and AWS Fargate) Features

ECS Compose-X Documentation, Release 0.14.4

6.3 Service Definition

Property Name Sup-
ported

Over-
ride

Note/Extras Compose/X Property

CapacityProvider-
Strategy

N

Cluster Y Y x-cluster to create or use x-cluster
DeploymentCon-
figuration

N

DeploymentCon-
troller

Y N To date, only ECS

DesiredCount Y N/A service.deploy.replicas de-
ploy x-scaling

EnableECSMan-
agedTags

Y N

LoadBalancers Y N/A x-elbv2
NetworkConfigura-
tion

Y Y service.networks x-network

PlacementCon-
straints

N N/A

PlacementStrate-
gies

N N/A

PlatformVersion Y Y Default to 1.4.0 for full features sup-
port

PropagateTags Y N
Role Y N Can extend default with x-aws- or x-

iam
x-iam

SchedulingStrategy N N/A
ServiceArn N N/A
ServiceName Y N Stricly generated by AWS CFN
ServiceRegistries Y Y See AppMesh x-appmesh
Tags Y Y
TaskDefinition Y N Strictly generated by Compose-X

and AWS CFN

6.4 Cluster definition

All properties for AWS::ECS::Cluster are supported. Pass them through x-cluster

6.3. Service Definition 19

ECS Compose-X Documentation, Release 0.14.4

20 Chapter 6. AWS ECS (and AWS Fargate) Features

CHAPTER

SEVEN

DOCKER COMPOSE

7.1 services

Property Name Supported Note/Extras Replaced By Reference
build N
cap_add Y
cap_drop Y
command Y
configs N
cgroup_parent N
container_name Y
credential_spec N
deploy Y
devices N
depends_on Y
dns N
dns_search N
domainname N
tmpfs N
entrypoint Y
env_file Y
environment Y
expose N
external_links N
extra_hosts N
group_add N
healthcheck Y
hostname N
image Y x-aws-pull_policy supported
isolation N
labels Y
links Y Ignored when using AWS Fargate
logging Y
network_mode N Always set to awsvpc
networks Y
pid N
ports Y long and short syntax always awsvpc
secrets Y x-secrets

continues on next page

21

ECS Compose-X Documentation, Release 0.14.4

Table 1 – continued from previous page
Property Name Supported Note/Extras Replaced By Reference
security_opt N
stop_grace_period N
stop_signal N Incompatible with AWS ECS
sysctls Y Ignored when using AWS Fargate
ulimits Y only nofile for Fargate
userns_mode N Incompatible with AWS ECS
volumes Y x-efs and nfs autodetect
restart N Incompatible with AWS ECS
shm_size Y Ignored when using AWS Fargate
read_only Y
working_dir Y

7.1.1 deploy

Tip: See x-scaling and deploy for more scaling settings. See labels for more details on combining services into a
single task definition

Hint: Not all ulimits are supported in AWS Fargate. ECS Compose-X Will automatically deactivate the ones not
supported.

Tip: user expects the format uid:gid to use, users and group names aren’t supported.

7.2 volumes

Property Name Supported Notes/Extras Replaced By Reference
driver Y nfs autodetect for NFS with AWS EFS
driver_opts Y supports ecs-plugin definition
driver_opts.type Y override to bind for Fargate
driver_opts.o N
driver.name Y efs/nfs autodetect for NFS with AWS EFS
labels N
external Auto defines x-efs.use
name Y Auto defines

22 Chapter 7. Docker Compose

https://docs.docker.com/compose/compose-file/compose-file-v3/#ulimits

ECS Compose-X Documentation, Release 0.14.4

7.3 network

Supported with mapping of AWS VPC & Subnets.

Hint: However DNS features are not supported, you can define a number of DNS Settings for your deployment. See
x-dns

7.3. network 23

ECS Compose-X Documentation, Release 0.14.4

24 Chapter 7. Docker Compose

CHAPTER

EIGHT

DOCKER AWS ECS PLUGIN

Property
Name

Sup-
ported

Compose/X re-
finement

Reference Notes

x-aws-cluster Y x-cluster x-aws-cluster |
x-aws-
pull_credentials

Y x-aws-pull_credentials

x-aws-
autoscaling

Y x-scaling x-aws-autoscaling

x-aws-policies Y x-iam x-aws-policies
x-aws-role Y x-iam x-aws-role
x-aws-
logs_retention

Y x-logging x-aws-logs_retention Compose-X Autocorrect to
closest valid value

x-aws-
min_percent

Y x-aws-min_percent & x-aws-
max_percent

x-aws-
max_percent

Y x-aws-min_percent & x-aws-
max_percent

25

ECS Compose-X Documentation, Release 0.14.4

26 Chapter 8. Docker AWS ECS Plugin

CHAPTER

NINE

AWS IAM POLICIES FROM AWS SAM

ECS Compose-X has defined some IAM permissions for each resource types. In order to provide developers with
greater flexibility and use well known system, Compose-X also imports IAM definitions from AWS Serverless Appli-
cation Model.

You can find all the policies define in AWS SAM in AWS Documentation pages.

9.1 Example

Listing 1: ECS Compose-X Policy for SQS

services:
QueueConsumer: {} # Service definition

x-sqs:
QueueA:
Services:

- name: QueueConsumer
access: RWMessages

Listing 2: Using AWS SAM Policy

services:
QueueConsumer: {} # Service definition

x-sqs:
QueueA:
Services:

- name: QueueConsumer
access: SQSPollerPolicy

In the example above, we are using the SQSPollerPolicy which is already defined for us by AWS SAM.

27

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html

ECS Compose-X Documentation, Release 0.14.4

28 Chapter 9. AWS IAM Policies from AWS SAM

CHAPTER

TEN

SERVICES

We try to re-use as much as possible the docker compose (v3) reference as much as possible.

For the definition of the services, you can simply use the already existing Docker compose definition for your ser-
vices. Most of the docker-compose services keys are functional, to get a full breakdown, check the Docker Compose
compatibily matrix.

See also:

Docker Compose 3 file reference

Note: Any property in the docker-compose file you have today, for example, build is simply ignored. It will be
neither removed nor modified

Hint: Checkout the ECS ComposeX secrets definition syntax secrets to import AWS Secrets Manager secrets to your
container.

29

https://docs.docker.com/compose/compose-file/compose-file-v3/

ECS Compose-X Documentation, Release 0.14.4

30 Chapter 10. services

CHAPTER

ELEVEN

VOLUMES

This section covers the integration compatibility with docker-compose volumes into AWS ECS.

See also:

docker-compose volumes docker-compose services volumes

11.1 Understand Local volumes vs shared volumes vs persistent vol-
umes

In docker world, one can create docker volumes and attach these to the containers.

As very well synthesized in the tmpfs documentation page, we have

Volumes and bind mounts let you share files between the host machine and container so
→˓that you can persist data even after the container is stopped.

If you’re running Docker on Linux, you have a third option: tmpfs mounts. When you
→˓create a container with a tmpfs mount, the container can create files outside the
→˓container’s writable layer.

As opposed to volumes and bind mounts, a tmpfs mount is temporary, and only persisted
→˓in the host memory. When the container stops, the tmpfs mount is removed, and files
→˓written there won’t be persisted.

In AWS ECS you can use all 3 modes, although, tmpfs is not supported when deploying containers with AWS Fargate,
as the host might be shared with other customers, this could create a surface of attack between containers.

Also, it is worth noting that in AWS Fargate, you cannot use the bind mounts from the host: again, shared host, this
could create a surface of attack from one account to another.

But, that does not mean that in AWS Fargate you cannot create additional volumes outside of your image layers. In
fact, AWS Fargate 1.4.0 comes with some encrypted storage for your tasks among other features.

See also:

AWS Fargate 1.4.0 announcement

31

https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference
https://docs.docker.com/compose/compose-file/compose-file-v3/#volumes
https://docs.docker.com/storage/tmpfs/
https://aws.amazon.com/about-aws/whats-new/2020/04/aws-fargate-launches-platform-version-14/

ECS Compose-X Documentation, Release 0.14.4

11.2 Implementation in the AWS + Docker ECS Plugin

The ECS Plugin which allows you to define, in a similar way to ECS Compose-X, your volumes, is of the opinion that
any volume you would create is going to be a shared persistent volume using AWS EFS.

As you can see in these examples, you can either leave things by default or define some EFS equivalent properties to
define your volumes.

See also:

docker - ecs - volumes syntax reference

11.3 Implementation in ECS Compose-X

To maintain compatibility with the ECS Plugin, if you did specify that the driver should be nfs or efs (although this
is not a supported network driver!), ECS Compose-X will create for you a new FS etc. allowing your containers to
connect.

However, by default, ECS Compose-X will follow the behaviour described in the docker-compose volumes reference,
which is to respect the driver and driver_opts settings.

11.3.1 Define a volume for the task only

Although you cannot create a tmpfs in AWS Fargate, you might for consistency with your local development, define a
volume just to mount to a specific path.

As per the docker-compose volumes reference, we could have the following

services:
service-01:
volumes:
Just specify a path and let the Engine create a volume
- /var/lib/mysql

There what ECS Compose-X will do is to create in the task definition a new volume using the local driver volume
type, and assign that to the container definition in the task definition specifically.

11.3.2 Define a shared volume between tasks

Alternatively, and this is where the Docker ECS Plugin and ECS Compose-X differ, is in the use of the volumes
top-level instruction: unless specified otherwise, the volume will be treated as a local but shared volume.

volumes:
shared-volume:

services:
serviceA:
volumes:

- shared-volume:/mnt/shared:rw

serviceB:
volumes:

- source: shared-volume

(continues on next page)

32 Chapter 11. volumes

https://docs.docker.com/cloud/ecs-compose-examples/#volumes
https://docs.docker.com/cloud/ecs-integration/#volumes
https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference
https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

target: /mnt/shared
read_only: false
type: volume

In the above example, we would get a volume created and mounted to both containers.

11.3.3 Define a shared volume using AWS EFS

This is where ECS ComposeX merges back with the Docker ECS Plugin syntax: you can use the same syntax as
defined by the Docker ECS Plugin, for example

Using the ECS Plugin syntax reference

services:
test:
image: my-app
volumes:
- db-data:/app/data

volumes:
db-data:
driver_opts:

backup_policy: ENABLED
lifecycle_policy: AFTER_30_DAYS
performance_mode: maxIO
throughput_mode: provisioned
provisioned_throughput: 1024

If you were to use that definition in your compose file with ECS Compose-X, a new EFS will be created with the
settings above, along with all the necessary settings for it.

Using the ECS Compose-X specific reference

As usual, you can also define in ECS Compose-X a more comprehensive set of parameters to better define what you
want to achieve, using the x-efs key.

To go into more details about using x-efs, refer to x-efs

11.3. Implementation in ECS Compose-X 33

ECS Compose-X Documentation, Release 0.14.4

34 Chapter 11. volumes

CHAPTER

TWELVE

SECRETS

As you might have already used these, docker-compose allows you to define secrets to use for the application.

To help continue with docker-compose syntax compatibility, you can now declare your secret in docker-compose, and
add an extension field which will be a direct mapping to the secret name you have in AWS Secrets Manager.

ECS ComposeX will automatically add IAM permissions to the execution role of your Task definition and will export
the secret to your container, using the same name as in the compose file.

See also:

docker-compose secrets reference

Hint: For security purposes, the containers envoy and xray-daemon are not getting assigned the secrets.

12.1 Syntax

x-secrets:
Name: str
LinksTo: []
JsonKeys: []
Lookup: {}

12.1.1 Name

Type: String

The name of the secret in secrets manager to use and import.

Hint: If you want to put the full ARN, you can. There will be a validation for it.

35

https://docs.docker.com/compose/compose-file/#secrets

ECS Compose-X Documentation, Release 0.14.4

12.1.2 LinksTo

Type: List of Strings

AllowedValues:

• EcsExecutionRole

• EcsTaskRole

If you believe that your service application should have access to the secret via Task Role, simply add to the secret
definition as follows:

secret-name:
x-secrets:
Name: String
LinksTo:
- EcsExecutionRole
- EcsTaskRole

Warning: If you do not specify EcsExecutionRole when specifying LinksTo then you will not get the secret
exposed to your container via AWS ECS Secrets property of your Container Definition

12.1.3 JsonKeys

Type: List of objects/dicts

Note: Only Fargate 1.4.0+ Platform Version supports secrets JSON Key

Listing 1: JsonKeys objects structure

SecretKey: str
VarName: str
Transform: str

SecretKey

Name of the JSON Key in your secret.

VarName

The Name of the secret specifically for the secret JSON key

36 Chapter 12. secrets

ECS Compose-X Documentation, Release 0.14.4

Transform

When you want to transform the original secret key into something else, here are simple transforms.

java_properties

Take a string and replaces all letters to their uppercase version and replaces . with _

title

Set to uppercase the first letter of every word. some.properties becomes Some.Properties

capitalize

Changes all letters from lower case to uppercase but does not change anything else.

12.2 Examples

Listing 2: Short example

secrets:
topsecret_info:
x-secrets:
Name: /path/to/my/secret

services:
serviceA:
secrets:

- topsecret_info

Listing 3: Secret with assignment to Task and Execution Role

secrets:
abcd: {}
john:
x-secrets:

LinksTo:
- EcsExecutionRole
- EcsTaskRole

Name: SFTP/asl-cscs-files-dev

Listing 4: Secret Looked up from Tags and Name, also using JsonKeys

secrets:
zyx:
x-secrets:
Name: secret/with/kmskey
Lookup:
Tags:
- costcentre: lambda

(continues on next page)

12.2. Examples 37

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

- composexdev: "yes"
JsonKeys:
- SecretKey: username
VarName: PSQL_USERNAME

- SecretKey: password
VarName: PSQL_PASSWORD

Listing 5: Secret with assignment to Task and Execution Role

secrets:
abcd: {}
john:
x-secrets:

LinksTo:
- EcsExecutionRole
- EcsTaskRole

Name: arn:aws:secretsmanager:eu-west-1:123456789012:secret:/secret/abcd

38 Chapter 12. secrets

CHAPTER

THIRTEEN

NETWORKS

In docker-compose one can define diffent subnets which would use different properties, as documented here

This allows you to logically bind services on different networks etc, very useful in many scenarios.

In ECS ComposeX, we have added support to allow you to define these networks and logically associate them with
AWS VPC Subnets.

Refer to x-vpc for a full review of ECS ComposeX syntax definition for subnets mappings.

You can now define extra subnet groups based on different tags and map them to your services for override when using
Lookup or Use

Listing 1: Extra subnets definition

x-vpc:
Lookup:
VpcId: {}

AppSubnets: {}
StorageSubnets: {}
PublicSubnets: {}
Custom01:
Tags: {}

Listing 2: define compose networks and associate to a Subnet category

networks:
custom01:
x-vpc: Custom01

Listing 3: Map a compose defined network to a service

services:
serviceA:
networks:

- custom01

serviceB:
networks:
custom01: {}

Note: As per docker-compose config, the rendered networks in a service is a map / object. But it also can be a list.

39

https://docs.docker.com/compose/compose-file/#network-configuration-reference

ECS Compose-X Documentation, Release 0.14.4

40 Chapter 13. networks

CHAPTER

FOURTEEN

LOGGING

In AWS ECS you can define the log driver in a similar way as you do locally. In ECS Compose-X, default settings
will be applied and use awslogs driver by default.

For more information on the docker-compose logging syntax, refer to Docker Compose logging syntax reference

14.1 Supported drivers

Currently, any other driver is ignored and AWS Logs is used by default. This is to guarantee deployment success on
AWS ECS with AWS Fargate.

14.1.1 awslogs

Option Name Re-
quired

Notes/Features

awslogs-create-group False Compose-X creates a new log group by default
awslogs-region True When specified, Compose-X only handles IAM to grant.

If not set, defaults to AWS::Region
awslogs-endpoint False
awslogs-group True Defaults to family name when unset
awslogs-stream-
prefix

True Defaults to service name when unset

awslogs-datetime-
format

False

awslogs-multiline-
pattern

False

mode False
max-buffer-size False

Hint: To set the log retention period, you can use x-logging or x-aws-logs_retention

41

https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_awslogs.html
https://docs.docker.com/compose/compose-file/compose-file-v3/#logging

ECS Compose-X Documentation, Release 0.14.4

42 Chapter 14. logging

CHAPTER

FIFTEEN

DEPLOY

The deploy section allows to set various settings around how the container should be deployed, and what compute
resources are required to run the service.

For more details on the deploy, see docker documentation for deploy here

At the moment, all keys are not supported, mostly due to the way Fargate by nature is expecting settings to be.

15.1 resources

The resources allow you to define the CPU/RAM reservations and limits. In AWS ECS, the CPU only has one attribute,
so ECS Compose-X will use the highest value of the two if both set.

Once the container definitions have been generated, the CPU and RAM requirements are added up together. From
there, it will automatically select the closest valid Fargate CPU/RAM combination and set the parameter for the Task.

Important: CPUs should be set between 0.25 and 4 to be valid for Fargate, otherwise you will have an error.

15.1.1 replicas

This setting allows you to define how many tasks should be running for a given service. The value is used to define
MicroserviceCount.

15.1.2 labels

These labels aren’t used for much in native Docker compose as per the documentation. They are only used for the
service, but not for the containers themselves. Which is great for us, as we can then leverage that structure to implement
a merge of services.

In AWS ECS, a Task definition is a group of one or more containers which are going to be running as a one task. The
most usual use-case for this, is with web applications, which need to have a reverse proxy (ie. nginx) in front of the
actual application. But also, if you used the use_xray option, you realized that ECS ComposeX automatically adds the
x-ray-daemon sidecar. Equally, when we implement AppMesh, we will also have another side-car container for this.

So, here is the tag that will allow you to merge your reverse proxy or waf (if you used a WAF in container) fronting
your web application:

43

https://docs.docker.com/compose/compose-file/compose-file-v3/#deploy

ECS Compose-X Documentation, Release 0.14.4

ecs.task.family

For example, you would have:

base file for services with the x-keys for BDD
version: '3.8'
secrets:
abcd: {}
john:
x-secrets:

LinksTo:
- EcsExecutionRole
- EcsTaskRole

Name: SFTP/asl-cscs-files-dev
zyx:
x-secrets:

Name: secret/with/kmskey
Lookup:
Tags:
- costcentre: lambda

JsonKeys:
- VarName: ZYX_TEST
SecretKey: test

services:
app01:
logging:
driver: awslogs
options:

awslogs-group: a-custom-name
awslogs-create-group: "true"

sysctls:
- net.core.somaxconn=2048
- net.ipv4.tcp_syncookies=1

cap_add:
- ALL

env_file: ./use-cases/env-files/dummy.env
deploy:

update_config:
failure_action: rollback

labels:
ecs.task.family: bignicefamily

resources:
reservations:
cpus: '0.25'
memory: 1GB

environment:
LOGLEVEL: DEBUG
SHELLY: /bin/bash
TERMY: screen

image: nginx
volumes:
- type: tmpfs

target: /tmp
tmpfs:
size: 1024

- normal-vol:/var/tmp/shared
- some-volume:/var/anotherpath:ro

(continues on next page)

44 Chapter 15. deploy

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

links:
- app03:dateteller

ports:
- mode: awsvpc

protocol: tcp
published: 5000
target: 5000

secrets:
- zyx

x-logging:
RetentionInDays: 42
CreateLogGroup: False

x-network:
is_public: False
UseCloudmap: True
Ingress:

Myself: False
AwsSources:
- Type: PrefixList
Id: pl-6da54004

x-iam:
Policies:

- PolicyName: AllowPublishToCw
PolicyDocument:
Statement:
- Action:

- cloudwatch:PutMetricData
Effect: Allow
Resource:

- '*'
Sid: AllowPublishMetricsToCw

x-xray: false
x-scaling:
Range: "1-4"

app02:
depends_on:

- app01
- bignicefamily

env_file:
- ./use-cases/env-files/dummy.env

deploy:
update_config:

failure_action: pause
labels:

ecs.task.family: youtoo
replicas: 2
resources:
reservations:
cpus: '0.1'
memory: 64000kB

environment:
LOGLEVEL: DEBUG

healthcheck:
interval: 1m30s
timeout: 10s
start_period: 1h
retries: 3

(continues on next page)

15.1. resources 45

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

test:
- CMD
- curl
- localhost:5000/ping

image: nginx
ports:

- mode: awsvpc
protocol: tcp
published: 5000
target: 5000

secrets:
- zyx

volumes:
- source: some-volume
target: /app/data
type: volume

x-iam:
PermissionsBoundary: arn:aws:iam::aws:policy/AdministratorAccess
ManagedPolicyArns:

- arn:aws:iam::aws:policy/AdministratorAccess
x-scaling:
Range: "1-5"
TargetScaling:

CpuTarget: 88
DisableScaleIn: true

x-xray: false
tmpfs: /run

app03:
tmpfs:

- /run
- /tmp

sysctls:
net.core.somaxconn: 1024
net.ipv4.tcp_syncookies: 0

cap_add:
- NET_ADMIN
- SYS_PTRACE

cap_drop:
- SYS_ADMIN

ulimits:
nofile:

soft: 1024
hard: 2048

nproc: 512
x-aws-min_percent: 50
x-aws-max_percent: 150
deploy:

resources:
reservations:
cpus: '0.25'
memory: 134217728b

environment:
LOGLEVEL: DEBUG

image: nginx
ports:

- mode: awsvpc
protocol: tcp

(continues on next page)

46 Chapter 15. deploy

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

published: 5000
target: 5000

secrets:
- abcd
- zyx
- john

volumes:
- /generated/volume/from/path
- shared-images:/app/images
- some-volume:/app/data:ro

x-network:
Ingress:
Myself: False
ExtSources:
- Ipv4: 0.0.0.0/0
Description: ANYWHERE

x-logging:
RetentionInDays: 30

x-scaling:
Range: 1-10

rproxy:
logging:
driver: awslogs
options:

awslogs-region: us-east-1
depends_on:

- app01
- app02

deploy:
labels:
ecs.task.family: bignicefamily,youtoo

replicas: 1
resources:
limits:
cpus: '0.25'
memory: 64M

reservations:
cpus: '0.1'
memory: 32M

image: nginx
volumes:
- normal-vol:/tmp/shared

ports:
- mode: awsvpc

protocol: tcp
published: 80
target: 80

x-iam:
ManagedPolicyArns:
- arn:aws:iam::aws:policy/ReadOnlyAccess

x-xray: true
x-network:
is_public: False
UseCloudmap: True

volumes:
(continues on next page)

15.1. resources 47

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

shared-images: {}
some-volume: {}
normal-vol: {}

x-dns:
PrivateNamespace:
Name: lambda.internal

x-tags:
costcentre: lambda

Warning: The example above illustrates that you can either use, for deploy labels

• a list of strings

• a dictionary

ecs.depends.condition

This label allows to define what condition should this service be monitored under by ECS. Useful when container is
set as a dependency to another.

Hint: Allowed values are : START, SUCCESS, COMPLETE, HEALTHY. By default, sets to START, and if you
defined healthcheck, defaults to HEALTHY. See Dependency reference for more information

48 Chapter 15. deploy

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-containerdependency.html

CHAPTER

SIXTEEN

X-SCALING

Contents

• x-scaling

– Range

– TargetScaling

* CpuTarget / RamTarget

* ScaleInCooldown / ScaleOutCooldown

* DisableScaleIn

This section allows to define scaling for the ECS Service. For SQS Based scaling using step scaling, refer to SQS
Documentation.

services:
serviceA:
x-scaling:

Range: "1-10"
TargetScaling:

CpuTarget: 80

16.1 Range

Range, defines the minimum and maximum number of containers you will have running in the cluster.

#Syntax
Range: "<min>-<max>"
Example
Range: "1-21"

49

ECS Compose-X Documentation, Release 0.14.4

16.2 TargetScaling

Allows you to define target scaling for the service based on CPU/RAM.

Listing 1: target scaling syntax reference

x-scaling:
Range: "1-10"
TargetScaling:
CpuTarget: int (will be casted to float)
MemoryTarget: int (will be casted to float)
ScaleInCooldown: int (ie. 60)
ScaleOutCooldown: int (ie. 60)
DisableScaleIn: boolean (True/False)

16.2.1 CpuTarget / RamTarget

Defines the CPU percentage that we want the service to be under. ECS will automatically create and adapt alarms to
scale the service in/out so long as the average CPU usage remains beneath that value.

Attention: Note that setting both should not be set at the same time, as you might end up into a racing condition.

16.2.2 ScaleInCooldown / ScaleOutCooldown

This allows you to define the Cooldown between scaling activities in order to limit drastic changes.

Hint: These are set only for the CPU and RAM targets, no impact on other scaling such as SQS.

16.2.3 DisableScaleIn

Default: False

Same as the original Property in the CFN definition, this will deny a service to scale in after it has scaled-out for
applications that do not support to scale-in.

Hint: If you define multiple services within the same family, the lowest value for CPU/RAM and highest for scale
in/out are used in order to minimize the impact and focus on the weakest point.

50 Chapter 16. x-scaling

CHAPTER

SEVENTEEN

X-IAM

Contents

• x-iam

– PermissionsBoundary

– Policies

– ManagedPolicies

This section is the entrypoint to further extension of IAM definition for the IAM roles created throughout.

17.1 PermissionsBoundary

This key represents an IAM policy (name or ARN) that needs to be added to the IAM roles in order to represent the
IAM Permissions Boundary.

Note: You can either provide a full policy arn, or just the name of your policy. The validation regexp is:

r"((^([a-zA-Z0-9-_.\/]+)$)|(^(arn:aws:iam::(aws|[0-9]{12}):policy\/)[a-zA-Z0-9-_.\/]+
→˓$))"

Examples:

services:
serviceA:
image: nginx
x-configs:

iam:
boundary: containers

serviceB:
image: redis
x-configs:

iam:
boundary: arn:aws:iam::aws:policy/PowerUserAccess

Tip: if you specify ony the name, ie. containers, this will resolve into

51

ECS Compose-X Documentation, Release 0.14.4

arn:${AWS::Partition}:iam::${AWS::AccountId}:policy/containers

17.2 Policies

Allows you to define additional IAM policies. Follows the same pattern as CFN IAM Policies

x-iam:
Policies:

- PolicyName: somenewpolicy
PolicyDocument:
Version: "2012-10-17"
Statement:

- Effect: Allow
Action:
- ec2:Describe*

Resource:
- "*"

Sid: "AllowDescribeAll"

Tip: If you used the ECS Plugin from docker before, this is equivalent to x-aws-role

17.3 ManagedPolicies

Allows you to add additional managed policies. You can specify the full ARN or just a string for the name / path of
the policy. If will resolve into the same regexp as for PermissionsBoundary

Tip: If you used the ECS Plugin from docker before, this is equivalent to x-aws-policies

Hint: You can also use the Docker ECS-Plugin x-aws-iam extension fields with ECS ComposeX

52 Chapter 17. x-iam

CHAPTER

EIGHTEEN

X-NETWORK

Listing 1: Overview

UseCloudmap: bool
Ingress: {ingress_definition}

Contents

• x-network

– UseCloudmap

– Ingress definition

* Syntax reference

– Map VPC subnets to docker-compose networks

18.1 UseCloudmap

Boolean to turn on or off the integration to CloudMap for the services.

Default: False

Note: If you want to use appmesh and define x-appmesh in the template, automatically, all services will be registered
in AWS CloudMap.

18.2 Ingress definition

This allows you to define specific ingress control from external sources to your environment. For example, if you have
to whitelist IP addresses that are to be allowed communication to the services, you can list these, and indicate their
name which will be shown in the EC2 security group description of the ingress rule.

53

ECS Compose-X Documentation, Release 0.14.4

18.2.1 Syntax reference

Ingress:
ExtSources: []
AwsSources: []
Myself: True/False

Listing 2: Ingress Example

services:
app01:
x-network:

Ingress:
ExtSources:
- IPv4: 0.0.0.0/0
Name: all

- IPv4: 1.1.1.1/32
Source_name: CloudFlareDNS

AwsSources:
- Type: SecurityGroup
Id: sg-abcd

- Type: PrefixList
Id: pl-abcd

Myself: True/False

Note: Future feature is to allow to input a security group ID and the remote account ID to allow ingress traffic from
a security group owned by another of your account (or 3rd party).

Hint: The protocol is automatically detected based on the port definition. By default, it is TCP

Hint: To see details about the Ingress for Load Balancers, refer to Ingress

Hint: When using an ALB, you do not need to define that ALB security group etc., all inbound rules will be defined
automatically to allow the ALB to communicate with your service!

18.3 Map VPC subnets to docker-compose networks

Listing 3: AWS VPC to network mapping

networks:
internal:
x-vpc: InteralCustomSubnets

x-vpc:
VpcId:
Tags: []

AppSubnets:
(continues on next page)

54 Chapter 18. x-network

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Tags: []
PublicSubnets:
Tags: []

StorageSubnets:
Tags: []

InteralCustomSubnets:
Tags: []

services:
serviceA:
networks: [internal]

In some cases, you might have complex VPC topology and created new specific Subnets in x-vpc, and map that subnet
name to a docker-network defined network. Then later, you can set your service in the services definition to be put
into that network.

18.3. Map VPC subnets to docker-compose networks 55

ECS Compose-X Documentation, Release 0.14.4

56 Chapter 18. x-network

CHAPTER

NINETEEN

X-LOGGING

The following parameter is identical in behaviour to x-aws-logs_retention defined in the docker ECS Plugin.

Listing 1: x-logging syntax definition

RetentionInDays: int

Hint: Alternatively you can use the ECS Plugin logging definition will ECS Compose-X will use. If both are defined,
priority goes to the highest value.

19.1 RetentionInDays

Value to indicate how long should the logs be retained for the service.

Hint: If the value you enter is not in the allowed values, will set to the closest accepted value.

Hint: Emulates the CW Logs property RetentionInDays Property

19.2 Examples

services:
serviceA:
x-logging:

RetentionInDays: 42

57

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-logs-loggroup.html#cfn-logs-loggroup-retentionindays

ECS Compose-X Documentation, Release 0.14.4

58 Chapter 19. x-logging

CHAPTER

TWENTY

X-XRAY

This section allows to enable X-Ray to run right next to your container. It will use the AWS original image for X-Ray
Daemon and exposes the ports to the task.

20.1 Syntax reference

x-xray: True/False

20.2 Example

Listing 1: Enable XRay for your service.

services:
serviceA:
x-xray: True

See also:

ecs_composex.ecs.ecs_service#set_xray

20.3 IAM permissions

Enabling XRay will automatically add the following managed policy to your task definition:

arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess

Listing 2: IAM policy definition

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"xray:PutTraceSegments",
"xray:PutTelemetryRecords",
"xray:GetSamplingRules",
"xray:GetSamplingTargets",

(continues on next page)

59

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

"xray:GetSamplingStatisticSummaries"
],
"Resource": [

"*"
]

}
]

}

60 Chapter 20. x-xray

CHAPTER

TWENTYONE

X-CODEGURU-PROFILER

Enables to use or create an existing/a new CodeProfiling group for your service.

Unlike most of the resources attachments, this is not done at the “family” level but at the service level, as it might not
be wanted to profile every single container in the task.

x-codeguru-profiler is a service/task level setting which offers a 1:1 mapping between your application and the profiler.

Hint: Using ECS ComposeX, this automatically adds an Environment variable to your container,
AWS_CODEGURU_PROFILER_GROUP_ARN and AWS_CODEGURU_PROFILER_GROUP_NAME with
the ARN of the newly created Profiling Group.

21.1 Syntax reference / Examples

I wanted to make it easy for people to use as well as being flexible and support all CFN definition.

Listing 1: Syntax for setting pre-defined codeprifiling group without cre-
ating a new one.

x-codeguru-profiler: name (str)

Listing 2: Create a new CodeProfiling group with default settings.

x-codeguru-profiler: True|False (bool)

Listing 3: Properties as defined in AWS CFN for ProflingGroup

x-codeguru-profiler:
AgentPermissions: Json
AnomalyDetectionNotificationConfiguration:
- Channel

ComputePlatform: String
ProfilingGroupName: String
Tags:
- Tag

See also:

AWS CFN definition for CodeGuru profiling group

61

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codeguruprofiler-profilinggroup.html

ECS Compose-X Documentation, Release 0.14.4

Note: When you define the properties, in case you already had principals, it will still automatically add the IAM
Task Role to the list of Principals that should publish to the profiling group.

21.2 Code Example

Here is an example of a simple Flask application I added the codeguru profiler for.

import boto3
import logging
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.core import patcher, xray_recorder
from werkzeug.middleware.proxy_fix import ProxyFix
from codeguru_profiler_agent import Profiler
from app02 import APP

def start_app():
debug = False
if "DEBUG" in APP.config and APP.config["DEBUG"]:

debug = True

if "USE_XRAY" in APP.config and APP.config["USE_XRAY"]:
xray_recorder.configure(service=APP.name)
XRayMiddleware(APP, xray_recorder)
xray_recorder.configure(service="app01")
if "USE_XRAY" in APP.config and APP.config["USE_XRAY"]:

patcher.patch(
(

"requests",
"boto3",

)
)

print("Using XRay")

if APP.config["AWS_CODEGURU_PROFILER_GROUP_NAME"]:
p = Profiler(

profiling_group_name=APP.config["AWS_CODEGURU_PROFILER_GROUP_NAME"],
aws_session=boto3.session.Session(),

)
p.start()
print(

f"Started profiler {p} for {APP.config['AWS_CODEGURU_PROFILER_GROUP_NAME
→˓']}"

)
logging.getLogger('codeguru_profiler_agent').setLevel(logging.INFO)

APP.wsgi_app = ProxyFix(APP.wsgi_app)
APP.run(host="0.0.0.0", debug=debug)

if __name__ == "__main__":
start_app()

See also:

62 Chapter 21. x-codeguru-profiler

ECS Compose-X Documentation, Release 0.14.4

Full Applications code used for this sort of testing can be found here

21.2. Code Example 63

https://github.com/lambda-my-aws/composex-testing-apps/tree/main/app02

ECS Compose-X Documentation, Release 0.14.4

64 Chapter 21. x-codeguru-profiler

CHAPTER

TWENTYTWO

COMMON SYNTAX FOR X-RESOURCES

ECS ComposeX requires to expands onto the original Docker compose file defintion in order to map the docker
compose properties to their equivalent settings on AWS ECS and otherwise for the other “Extra” resources.

In general for each x- section of the docker compose document, we will find three attributes to each resource:

• Properties

• Settings

• Services

• Lookup

22.1 Properties

Unless indicated otherwise, these are the properties for the resource as you would define them using the AWS proper-
ties in the AWS CloudFormation resource definition.

Warning: In order to update some resources, AWS Sometimes needs to create new ones to replace the once
already in place, depending on the type of property you are changing. To do so, AWS will need to have the name
of the resource generated, and not set specifically for it. It is a limitation, but in the case of most of the resources,
it also allows for continued availability of the service to the resources.

Therefore, some resources will not be using the Name value that you give to it, if you did so.

22.2 Lookup

Allows you to Lookup existing resources (tagged) that you would like to use with the new services you are deploying.
Everything with regards to the access and other properties, depending on the type of resources, will remain the same.

This is accomplished by using AWS Resources Group Tags API which means, at this point in time, you can only find
resources that are tagged.

Listing 1: Generic format for Lookup

Lookup:
Tags:
- Key: Value
- Key: Value

RoleArn: <str|optional>

65

ECS Compose-X Documentation, Release 0.14.4

22.2.1 Tags

The tags are a list of Tags that have been assigned to the resource. Based on the type of resource, this might need to
resolve to a single specific resource in your AWS account / region.

22.2.2 RoleArn

This allows you to provide the ARN of an IAM Role that ComposeX can use in order to lookup for resources. It is
very useful in case you plan to do cross-account lookup for shared resources or simply to render your templates in a
central CICD account.

Note: It will never modify the looked up object!

Warning: You can only lookup tagged resource on AWS.

Tip: Tags keys and values are case sensitive. At this stage, this does not support regexps.

22.3 Settings

The settings is the section where we can take shortcuts or wrap around settings which would otherwise be complex to
define. Sometimes, it simply is an easy way to use helpers which are configurable. For example, in the next interation
for the x-rds resources, we will allow to define the latest RDS engine and version that supports Serverless for aurora.

There is a set of settings which are going to be generic to all modules.

22.3.1 EnvNames

Multiple teams who would want to adopt ECS ComposeX might already have their own environment variable keys (or
names) for a common resource. For example, team A and team B can use the same SQS queue but they did not define
a common name for it, so team A calls it QueueA and team B calls it QUEUE_A.

With EnvNames, you can define a list of environment variables that will all share the same value, simply have a
different name.

Hint: No need to add the name of the resource as defined in the docker compose file, this will always be added by
default.

66 Chapter 22. Common syntax for x-resources

ECS Compose-X Documentation, Release 0.14.4

22.3.2 Subnets

Listing 2: Example of override for RDS

x-rds:
dbA:
Settings:

Subnets: AppSubnets

This parameter allows you to override which subnets should be used for the resource to be deployed to. It applies to
that resource only so if you had for example, multiple RDS instances, default behaviour is observed for all resources
that do not have this override.

Note: This only applies to services using TCP, so * x-rds * x-docdb * x-elasticache

Note: For ECS services to be deployed into different subnets, refer to networks

22.4 Services

This is a list of object, with two keys: name, access. The name points to the service as defined in the docker compose
file.

Warning: This is case sensitive and so the name of the service in the list must be the same name as the service
defined.

Note: At this point in time, each x- section has its own pre-defined IAM permissions for services that support IAM
access to the resources. In a future version, I might add a configuration file to override that behaviour.

Refer to each x- resource syntax to see which access types are available.

22.4. Services 67

ECS Compose-X Documentation, Release 0.14.4

68 Chapter 22. Common syntax for x-resources

CHAPTER

TWENTYTHREE

X-DYNAMODB

Listing 1: Syntax reference

x-dynamodb:
table-A:
Properties: {}
MacroParameters: {}
Settings: {}
Services: []

23.1 Properties

Refer to AWS CFN Dynamodb Documentation. We support all of the definition and test with the documentation
examples.

Listing 2: Tables with GSI

Blog applications

version: '3.8'

x-dynamodb:
tableA:
Properties:

AttributeDefinitions:
- AttributeName: "Album"
AttributeType: "S"

- AttributeName: "Artist"
AttributeType: "S"

- AttributeName: "Sales"
AttributeType: "N"

- AttributeName: "NumberOfSongs"
AttributeType: "N"

KeySchema:
- AttributeName: "Album"
KeyType: "HASH"

- AttributeName: "Artist"
KeyType: "RANGE"

ProvisionedThroughput:
ReadCapacityUnits: "5"
WriteCapacityUnits: "5"

(continues on next page)

69

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

GlobalSecondaryIndexes:
- IndexName: "myGSI"
KeySchema:

- AttributeName: "Sales"
KeyType: "HASH"

- AttributeName: "Artist"
KeyType: "RANGE"

Projection:
NonKeyAttributes:
- "Album"
- "NumberOfSongs"

ProjectionType: "INCLUDE"
ProvisionedThroughput:

ReadCapacityUnits: "5"
WriteCapacityUnits: "5"

- IndexName: "myGSI2"
KeySchema:

- AttributeName: "NumberOfSongs"
KeyType: "HASH"

- AttributeName: "Sales"
KeyType: "RANGE"

Projection:
NonKeyAttributes:
- "Album"
- "Artist"

ProjectionType: "INCLUDE"
ProvisionedThroughput:

ReadCapacityUnits: "5"
WriteCapacityUnits: "5"

LocalSecondaryIndexes:
- IndexName: "myLSI"
KeySchema:

- AttributeName: "Album"
KeyType: "HASH"

- AttributeName: "Sales"
KeyType: "RANGE"

Projection:
NonKeyAttributes:
- "Artist"
- "NumberOfSongs"

ProjectionType: "INCLUDE"

Services:
- name: app03

access: RW
- name: app02

access: RW
- name: bignicefamily

access: RO

70 Chapter 23. x-dynamodb

ECS Compose-X Documentation, Release 0.14.4

23.2 Settings

See the Settings for more details.

Hint: Given DynamoDB is serverless (unless using DAX), there is no Subnets override.

23.3 Lookup

For more details, see the Lookup.

Listing 3: Lookup DynamoDB Table example

x-dynamodb:
table-A:
Lookup:

Tags:
- table-name: table123
- owner: myself
- costallocation: 123

Services:
- name: serviceA

access: DynamoDBCrudPolicy

ECS Compose-X defined access names:

• RW : Allow read/write/delete on the table items

• RO: Allow read only actions on the table items

Some of the AWS SAM access:

• DynamoDBCrudPolicy

• DynamoDBReadPolicy

• DynamoDBWritePolicy

23.4 Services

Listing 4: Define services

Services:
- name: serviceA
access: RW

- name: serviceB
access: RO

23.2. Settings 71

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-crud-policy
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-read-policy
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-write-policy

ECS Compose-X Documentation, Release 0.14.4

72 Chapter 23. x-dynamodb

CHAPTER

TWENTYFOUR

X-RDS

24.1 Syntax

x-rds:
psql-dbA:
Properties: {}
MacroParameters: {}
Settings: {}
Services: []
Lookup: {}

24.2 Properties

RDS clusters or instances need a lot of properties. In order to keep compatibility you can still provide all the properties
that the RDS Cluster or RDS Instance would need with the same definition as in AWS CloudFormation.

However, some settings will be replaced automatically (at least for the foreseeable future), such as the master username
and password. The reason for it is to allow to keep integration to your ECS Services as seamless as possible.

24.2.1 Using properties

When using Properties, you can use either the RDS Aurora Cluster properties or RDS Instances properties. ECS
ComposeX will attempt to automatically identify whether this is a DB Cluster or DB Instance properties set. If
successful, it will ingest all your properties, and explained earlier, interpolate a few with new ones created for you.

• MasterUsername

• MasterUserPassword

• Security Groups

73

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-masterusername
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-masteruserpassword
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-vpcsecuritygroups

ECS Compose-X Documentation, Release 0.14.4

24.3 MacroParameters

MacroParameters for RDS allow you to set only very little settings / properties and let ECS ComposeX do the rest for
you.

Listing 1: MacroParameters syntax

Engine: str
EngineVersion: str
UseServerless: bool
UseMultiAz: bool
ParametersGroup: {} # Properties for parameters group as per AWS CFN
→˓definition
Instances: [] # Only valid when creating a DBCluster, allows to define
→˓multiple DB Instances
RdsFeatures: {} # Custom settings to define AWS RDS AssociatedRoles
PermissionsBoundary: str # Allow you to define an IAM boundary policy that will be
→˓used for the RDS IAM role(s)

Listing 2: MacroParameters definitions example

Engine: aurora-postgresql # Same as AWS CFN Engine property
EngineVersion: 11.7 # Same as AWS CFN EngineVersion property
UseServerless: False
UseMultiAz: True
ParametersGroups:

Description: Some description
Family: aurora-postgresql-11.7
Parameters: {}

Instances: []
RdsFeatures:
- Name: s3Import
Resources:

- x-s3::bucket-01
- arn:aws:s3:::bucket/path/allowed/*
- bucket-name

24.3.1 PermissionsBoundary

Allows to define whether an IAM Policy boundary is required for the IAM roles that will be created around the RDS
Cluster/Instance.

Hint: This value can be either a policy name or policy ARN. When a policy Name, the ARN is built based on your
Account ID.

74 Chapter 24. x-rds

ECS Compose-X Documentation, Release 0.14.4

24.3.2 RdsFeatures

Listing 3: Syntax definition

RdsFeatures:
- Name: <DB Engine feature name>
- Resources: [<str>]

The RDS Features is a wrapper to automatically define which RDS Features, supported by the Engine family, you
might want to enable. For these features, which require an IAM role, it will create a new IAM role specifically linked
to RDS and grant permissions based on the what the feature requires.

If you had set AssociatedRoles already in the permissions, then each FeatureName you have already defined that you
might re-define in RdsFeatures will be skipped. If you wish to use RdsFeatures then remove that feature from the
AssociateRoles definition.

Attention: This was primarily developed to allow feature request #375 so at the moment it only supports s3Import
and s3Export.

Listing 4: Example with different bucket names syntax

x-rds:
dbB:
Properties: {}
MacroParameters:
PermissionsBoundary: policy-name
RdsFeatures:

- Name: s3Import
Resources:

- x-s3::bucket-01
- arn:aws:s3:::sacrificial-lamb/folder/*
- bucket-name

- Name: s3Export
Resources:

- x-s3::bucket-01
- arn:aws:s3:::sacrificial-lamb/folder/*
- bucket-name

Hint: You can reference a S3 bucket defined in x-s3. This supports S3 buckets created and referenced via Lookup

24.4 Services

At this point in time, there is no plan to deploy as part of ECS ComposeX a lambda function that would connect to the
DB and create a DB/schema specifically for the microservice, as would this lambda function do.

The syntax for listing the services remains the same as the other x- resources but the access type won’t be respected.

24.4. Services 75

https://github.com/lambda-my-aws/rds-auth-helper

ECS Compose-X Documentation, Release 0.14.4

24.4.1 Access types

Warning: The access key value won’t be respected at this stage. This is required to keep compatibility with other
modules.

24.5 Settings

Listing 5: Supported Settings

EnvNames: [<str>] # List of Environment Variable names to use for exposure to
→˓container

24.6 Lookup

The lookup allows you to find your cluster or db instance and also the Secret associated with them to allow ECS
Services to get access to these.

It will also find the DB security group and add an ingress rule.

x-rds:
dba:
Lookup:

cluster:
Name: cluster-identifier
Tags:
- sometag: value

instance:
Name: DB Instance Id
Tags:
- sometag: value

secret:
Tags:
- sometag: value

Name: secret/in/secretsmanager

When using AWS RDS Aurora, you should be specifying the cluster, otherwise the instance for “traditional” RDS
instances.

24.7 Defaults

24.7.1 Credentials

Aurora and traditional RDS Databases support both Username/Password generic authentication. Due to the wide
adoption of that authentication mechanism, all RDS Dbs will come with a username/password, auto generated and
stored in AWS Secrets Manager.

Hint: We do plan to allow a tick button to enable Aurora authentication with IAM, however have not received a
Feature Request for it.

76 Chapter 24. x-rds

ECS Compose-X Documentation, Release 0.14.4

AWS Secrets Manager integrates very nicely to AWS RDS. This has no intention to implement the rotation system at
this point in time, however, it will generate the password for the database and expose it securely to the microservices
which can via environment variables fetch

• DB Endpoint

• DB username

• DB Password

• DB Port

24.8 Examples

Listing 6: New DB Creation

x-rds:
dbname:
Properties:

Engine: aurora-mysql
EngineVersion: 5.7.12

Services:
- name: app01

access: RW

Listing 7: Existing Cluster DB Lookup

x-rds:
existing-cluster-dbA:
Lookup:

cluster:
Tags:
- key: value

secret:
Tags:
- key: value

Hint: The DB Family group will be found automatically and the setting will allow creation of a new RDS Parameter
group for the Cluster / DB Instance.

24.8. Examples 77

ECS Compose-X Documentation, Release 0.14.4

78 Chapter 24. x-rds

CHAPTER

TWENTYFIVE

X-DOCDB

25.1 Syntax

x-docdb:
docdb-01:
Properties: {}
Settings: {}
Services: []
Lookup: {}
MacroParameters: {}

Tip: For production workloads, to avoid any CFN deadlock situations, I recommend you generate the CFN templates
for docdb, and deploy the stacks separately. Using Lookup you can use existing DocDB clusters with your new
services.

25.2 Properties

DocDB Cluster is rather very simple in its configuration. There aren’t 200+ combinations of EngineName and Engine
Version as for RDS, make life very easy.

However you can copy-paste all the properties you would find in the DocDB Cluster properties, some properties will
be ignored in order to keep the automation going:

• MasterUsername and MasterUserPassword These two will be auto generated and stored in secrets manager.
The services linked to it will be granted GetSecretValue to it.

• VpcSecurityGroupIds The security group will be generated for the DB specifically and allow services listed
only.

• AvailabilityZones Under trial, but not sure given that we give a Subnet Group why one would also define the
AZs and it might conflict.

• DBClusterIdentifier As usual, named resources make for a nightmare to rename etc. Instead, there will be a
Name tag associated with your Cluster.

• DBSubnetGroupName Equally gets created only. For now.

• SnapshotIdentifier Untested - 2020-11-13 - will support it later.

79

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbcluster.html

ECS Compose-X Documentation, Release 0.14.4

25.3 MacroParameters

These parameters will allow you to define extra parameters to define your cluster successfully.

Instances: []
DBClusterParameterGroup: {} # AWS DocDB::DBClusterParameterGroup properties

25.3.1 Instances

List of DocDB instances. The aspiration is to follow the same syntax as the DocDB Instance.

Note: Not all Properties are respected, instead, they follow logically the attachment to the DocDB Cluster.

Instances:
- DBInstanceClass: <db instance type>
PreferredMaintenanceWindow: <window definition>
AutoMinorVersionUpgrade: bool

Hint: If you do not define an instance, ECS ComposeX automatically creates a new one with a single node of type
db.t3.medium

25.3.2 DBClusterParameterGroup

Allows you to create on-the-fly parameter groups to tune your DocDB cluster. Refer to DocDB DBClusterParameter-
Group for more details.

Listing 1: parameter groups example

Description: "description"
Family: "docdb3.6"
Name: "sampleParameterGroup"
Parameters:

audit_logs: "disabled"
tls: "enabled"
ttl_monitor: "enabled"

25.4 Services

The syntax for listing the services remains the same as the other x- resources.

Services:
- name: <service/family name>
access: <str>

80 Chapter 25. x-docdb

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbinstance.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbclusterparametergroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbclusterparametergroup.html

ECS Compose-X Documentation, Release 0.14.4

25.4.1 Access types

Warning: The access key value do not have an effect at this stage.

25.5 Settings

The only setting for DocumentDB is EnvNames as for every other resources.

Hint: Given that the DB Secret attachment populates host, port etc., we expose as env vars the Secret associated to
the DB, not the DB itself.

25.6 Lookup

Lookup for Document DB is available!

Warning: For some reason the group resource tag API returns two different clusters even though they are the
same one. Make sure to specify the Name along with Tags until we figure an alternative solution. Sorry for the
inconvenience.

25.7 Credentials

The credentials strucutre remains the same as for RDS SQL versions

Listing 2: DocumentDB secret structure after attachment

{
"dbClusterIdentifier": "<str>",
"password": "<str>",
"engine": "<str>",
"port": "<int>",
"host": "<str>",
"username": "<str>"

}

25.8 Examples

Listing 3: Sample to crate two DBs with different instances configuration

DOCDB Simple use-case. Creating new DBs

x-docdb:
docdbA:

(continues on next page)

25.5. Settings 81

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Properties: {}
Settings:

EnvNames:
- DOCDB_A

Services:
- name: app03

access: RW

docdbB:
Properties: {}
Settings:

EnvNames:
- DOCDB_B

Services:
- name: app03

access: RW
MacroParameters:
Instances:
- DBInstanceClass: db.r5.large
- DBInstanceClass: db.r5.xlarge
AutoMinorVersionUpgrade: True

docdbC:
Properties:
BackupRetentionPeriod: 7
DBSubnetGroupName: String
DeletionProtection: False
EngineVersion: 4.0.0
StorageEncrypted: True
Tags:
- Key: Name
Value: docdb_C

Services:
- name: app03

access: RW
MacroParameters:
Instances:
- DBInstanceClass: db.r5.large
- DBInstanceClass: db.t3.medium
AutoMinorVersionUpgrade: True

DBClusterParameterGroup:
Description: "Some description"
Family: "docdb4.0"
Name: "sampleParameterGroup"
Parameters:
audit_logs: "disabled"
tls: "disabled"
ttl_monitor: "enabled"

Listing 4: Create a DocDB and import an existing one.

DOCDB Simple use-case. Creating new DBs

x-docdb:
(continues on next page)

82 Chapter 25. x-docdb

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

docdbA:
Properties: {}
Settings:

EnvNames:
- DOCDB_A

Services:
- name: app03

access: RW

docdbB:
Settings:

EnvNames:
- DOCDB_A

Services:
- name: app03

access: RW
Lookup:

cluster:
Name: docdbb-purmjgtgvyqr
Tags:
- CreatedByComposeX: "true"
- Name: docdb.docdbB

secret:
Tags:
- aws:cloudformation:logical-id: docdbBSecret

25.8. Examples 83

ECS Compose-X Documentation, Release 0.14.4

84 Chapter 25. x-docdb

CHAPTER

TWENTYSIX

X-ELASTIC_CACHE

Listing 1: syntax reference

Properties: {} # AWS CacheCluster or ReplicationGroup properties
MacroParameters: {} # Shortcut parameters to get going quickly
Settings: {} # Generic settings supported by all resources
Services: [] # List of services that will get automatically access to the
→˓resource.
Lookup: {} # Lookup definition to find existing Cache or ReplicationGroup.

Hint: ECS ComposeX will always create a new SecurityGroup for a new resource to ensure the services can get
access by setting EC2 Security Ingress rules.

26.1 Properties

This allows you to define all the properties for either the AWS CacheCluster or AWS Replication Group resource as
part of the AWS ElasticCache family.

ECS ComposeX will automatically detect which of the two resource it is, based on the properties you will define.

Note: ECS ComposeX evaluates first for CacheCluster, so you might need to add an extra different parameter for
ReplicationGroup to be detected appropriately.

26.2 MacroParameters

This allows you to define a very few of the AWS CacheCluster resource if you do not want to define the Properties
and / or extra resources that are common to both the ReplicationGroup and CacheCluster.

Listing 2: Short syntax for properties to create a new CacheCluster

Engine: "redis|memcached" # The engine, required.
EngineVersion: <engine_version> # The engine version, required
CacheNodeType: <cache_node type> # Optionally, define the CacheNodeType, defaults
→˓to cache.t3.small
NumCacheNodes: <N> # Optionally, define the NumCacheNodes, defaults
→˓to 1
ParameterGroup: {} # Optioanlly, define a new parameter group

85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html

ECS Compose-X Documentation, Release 0.14.4

26.2.1 ParameterGroup

This allows you to create a specific parameter group for the CacheCluster or ReplicationGroup. It supports all of the
properties you can set in the original AWS ParameterGroup definition.

Hint: Your parameter group settings have to match the settings supported by the Engine. Refer to Engine Parameters
guide to see what the engine you have can support as settings.

26.3 Settings

See Settings

26.4 Services

Services:
- name: <service name> # Service or Family name
access: <ignored> # Generic property that has to be set, ignored for now.

List of services you want to grant access to the CacheCluster or ReplicationGroup to. ECS ComposeX will automat-
ically get the attributes of your cluster based on its type (Memcached/Redis/Redis ReplicationGroup), and pass these
on down to the service stack.

Most importantly, it will create the SecurityGroup Ingress rules to allow your service to have access to the Cluster
Node via the indicated SecurityGroup.

Hint: ECS ComposeX will not handle the Redis6.x RBAC access as this is a lot more involved than generating CFN
templates etc. This might come in a future version.

26.5 Lookup

This allows you to define via Tags the ElasticCache Cluster or ReplicationGroup that already exists and you want your
services to have access to.

It will automatically select the AWS Security Group associated with your cluster and put down the settings of your
cluster into a CloudFormation mapping to pass it onto the services.

26.6 Examples

ComposeX env file with ElasticCache definitions

x-elasticache:
cache01:
Properties:

(continues on next page)

86 Chapter 26. x-elastic_cache

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-parameter-group.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.html

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

AutoMinorVersionUpgrade: 'true'
Engine: memcached
EngineVersion: 1.6.6
CacheNodeType: cache.t3.small
NumCacheNodes: 1

Services:
- name: app03

access: RW

cache-02:
MacroParameters:
Engine: redis
EngineVersion: 6.x

Services:
- name: app03

access: RW

cache03:
Properties:

ReplicationGroupDescription: my description
NumCacheClusters: '2'
Engine: redis
CacheNodeType: cache.m3.medium
AutoMinorVersionUpgrade: 'true'
AutomaticFailoverEnabled: 'true'
CacheSubnetGroupName: subnetgroup
EngineVersion: 6.x
PreferredMaintenanceWindow: 'wed:09:25-wed:22:30'
SnapshotRetentionLimit: '4'
SnapshotWindow: '03:30-05:30'

Services:
- name: app02

access: RW

26.6. Examples 87

ECS Compose-X Documentation, Release 0.14.4

88 Chapter 26. x-elastic_cache

CHAPTER

TWENTYSEVEN

X-S3

27.1 Create or use existing S3 buckets to use for your applications

27.1.1 Properties

For the properties, go to to AWS CFN S3 Definition

27.1.2 MacroParameters

Some use-cases require special adjustments. This is what this section is for.

• NameSeparator

• ExpandRegionToBucket

• ExpandAccountIdToBucket

NameSeparator

Default is - which separates the different parts of the bucket that you might have automatically added via the other
MacroParameters

As shown below, the separator between the bucket name and AWS::AccountId or AWS::Region is -. This parameter
allows you to define something else.

Note: I would recommend not more than 2 characters separator.

Warning: The separator must allow for DNS compliance [a-z0-9.-]

89

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket.html

ECS Compose-X Documentation, Release 0.14.4

ExpandRegionToBucket

When definining the BucketName in properties, if wanted to, for uniqueness or readability, you can append to that
string the region id (which is DNS compliant) to the bucket name.

Properties:
BucketName: abcd-01

Settings:
ExpandRegionToBucket: True

Results into

!Sub abcd-01-${AWS::Region}

ExpandAccountIdToBucket

Similar to ExpandRegionToBucket, it will append the account ID (additional or instead of).

Properties:
BucketName: abcd-01

Settings:
ExpandRegionToBucket: True

Results into

!Sub 'abcd-01-${AWS::AccountId}'

Hint: If you set both ExpandAccountIdToBucket and ExpandRegionToBucket, you end up with

!Sub 'abcd-01-${AWS::Region}-${AWS::AccountId}'

27.1.3 Services

As for all other resource types, you can define the type of access you want based to the S3 buckets. However, for
buckets, this means distinguish the bucket and the objects resource.

Listing 1: permissions example

x-s3:
bucketA:
Properties: {}
Settings: {}
Services:

- name: service-01
access:
objects: RW
bucket: ListOnly

90 Chapter 27. x-s3

ECS Compose-X Documentation, Release 0.14.4

27.1.4 Lookup

Lookup is currently implemented for S3 buckets!

Hint: For S3, if the S3 bucket has a default KMS key encryption, the services will automatically be granted KMS
default EncryptDecrypt permissions in order to allow using the KMS key for objects manipulation.

27.1.5 IAM Permissions

For S3 buckets, the access types is expecting a object with objects and bucket to distinguish permissions for each. If
you indicate a string, the default permissions (bucket: ListOnly and objects: RW) will be applied.

Listing 2: Full access types policies definitions

{
"objects": {

"CRUD": {
"Action": [

"s3:GetObject",
"s3:DeleteObject",
"s3:PutObject",
"s3:GetObjectTagging",
"s3:GetObjectVersionTagging",
"s3:PutObjectTagging",
"s3:PutObjectVersionTagging",
"s3:DeleteObjectTagging",
"s3:DeleteObjectVersionTagging",
"s3:PutObjectAcl",
"s3:AbortMultipartUpload",
"s3:CreateMultipartUpload"

],
"Effect": "Allow"

},
"RW": {

"Action": [
"s3:GetObject*",
"s3:PutObject*"

],
"Effect": "Allow"

},
"StrictRW": {

"Action": [
"s3:GetObject",
"s3:PutObject"

],
"Effect": "Allow"

},
"StrictRWDelete": {

"Action": [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject"

],
"Effect": "Allow"

(continues on next page)

27.1. Create or use existing S3 buckets to use for your applications 91

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

},
"RWDelete": {

"Action": [
"s3:GetObject*",
"s3:PutObject*",
"s3:DeleteObject*"

],
"Effect": "Allow"

},
"ReadOnly": {

"Action": [
"s3:GetObject*"

],
"Effect": "Allow"

},
"StrictReadOnly": {

"Action": [
"s3:GetObject"

],
"Effect": "Allow"

},
"WriteOnly": {

"Action": [
"s3:PutObject*"

],
"Effect": "Allow"

},
"StrictWriteOnly": {

"Action": [
"s3:PutObject"

],
"Effect": "Allow"

}
},
"bucket": {

"ListOnly": {
"Effect": "Allow",
"Action": [

"s3:ListBucket",
"s3:GetBucketLocation",
"s3:GetBucketPublicAccessBlock"

]
},
"PowerUser": {

"Effect": "Allow",
"Action": [

"s3:ListBucket",
"s3:GetBucket*",
"s3:SetBucket*"

]
}

}
}

92 Chapter 27. x-s3

ECS Compose-X Documentation, Release 0.14.4

27.1.6 Examples

Listing 3: Create new S3 buckets

version: "3.8"

x-s3:
bucket-01:
Properties:

BucketName: bucket-01
AccessControl: BucketOwnerFullControl
ObjectLockEnabled: True
PublicAccessBlockConfiguration:

BlockPublicAcls: True
BlockPublicPolicy: True
IgnorePublicAcls: True
RestrictPublicBuckets: False

AccelerateConfiguration:
AccelerationStatus: Suspended

BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:

SSEAlgorithm: "aws:kms"
KMSMasterKeyID: "aws/s3"

VersioningConfiguration:
Status: "Enabled"

MacroParameters:
ExpandRegionToBucket: True
ExpandAccountIdToBucket: True

Settings:
EnvNames:
- bucket01
- BUCKET_ABCD-01

Services:
- name: app03

access: RWObjects
bucket-03:
Properties:
BucketName: bucket-03
AccessControl: BucketOwnerFullControl
ObjectLockEnabled: True
PublicAccessBlockConfiguration:

BlockPublicAcls: True
BlockPublicPolicy: True
IgnorePublicAcls: True
RestrictPublicBuckets: False

AccelerateConfiguration:
AccelerationStatus: Suspended

BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:

SSEAlgorithm: AES256
VersioningConfiguration:

Status: "Enabled"

Settings:
ExpandRegionToBucket: True

(continues on next page)

27.1. Create or use existing S3 buckets to use for your applications 93

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

ExpandAccountIdToBucket: False
EnvNames:

- bucket01
- BUCKET_ABCD-01

Services:
- name: app03

access: RWObjects
bucket-02:
Properties: {}
Settings:

ExpandRegionToBucket: False
ExpandAccountIdToBucket: False
EnableEncryption: AES256
EnableAcceleration: True
EnvNames:
- bucket01
- BUCKET_ABCD-01

Services:
- name: app03

access:
bucket: ListOnly
objects: RW

bucket-04:
Properties:
BucketName: bucket-04

Settings:
NameSeparator: "."
ExpandRegionToBucket: False
ExpandAccountIdToBucket: False
EnableEncryption: AES256
EnableAcceleration: True
EnvNames:
- bucket01
- BUCKET_ABCD-01

Services:
- name: app03

access:
bucket: ListOnly
objects: RW

Listing 4: Lookup and use only existing buckets

version: "3.8"

x-s3:
bucket-07:
Lookup:

Tags:
- aws:cloudformation:logical-id: ArtifactsBucket
- aws:cloudformation:stack-name: pipeline-shared-buckets

Services:
- name: app03

access:
bucket: PowerUser
objects: RW

(continues on next page)

94 Chapter 27. x-s3

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

bucket-08:
Settings:

EnvNames:
- BUCKET03

Lookup:
Name: sacrificial-lamb
Tags:
- composex: "True"

Services:
- name: app03

access:
bucket: PowerUser
objects: RW

Listing 5: Create new bucket with AWS CFN properties

version: "3.8"

x-s3:
bucket-01:
Properties:

BucketName: bucket-01
AccessControl: BucketOwnerFullControl
AccelerateConfiguration:

AccelerationStatus: Suspended
ObjectLockEnabled: True
PublicAccessBlockConfiguration:
BlockPublicAcls: True
BlockPublicPolicy: True
IgnorePublicAcls: True
RestrictPublicBuckets: False

BucketEncryption:
ServerSideEncryptionConfiguration:
- ServerSideEncryptionByDefault:

SSEAlgorithm: "aws:kms"
KMSMasterKeyID: "aws/s3"

VersioningConfiguration:
Status: "Enabled"

MetricsConfigurations:
- Id: EntireBucket

LifecycleConfiguration:
Rules:
- Id: GlacierRule
Prefix: glacier
Status: Enabled
ExpirationInDays: '365'
Transitions:

- TransitionInDays: '1'
StorageClass: GLACIER

CorsConfiguration:
CorsRules:
- AllowedHeaders:

- '*'
AllowedMethods:

- GET

(continues on next page)

27.1. Create or use existing S3 buckets to use for your applications 95

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

AllowedOrigins:
- '*'

ExposedHeaders:
- Date

Id: myCORSRuleId1
MaxAge: '3600'

- AllowedHeaders:
- x-amz-*

AllowedMethods:
- DELETE

AllowedOrigins:
- 'http://www.example.com'
- 'http://www.example.net'

ExposedHeaders:
- Connection
- Server
- Date

Id: myCORSRuleId2
MaxAge: '1800'

WebsiteConfiguration:
IndexDocument: index.html
ErrorDocument: error.html
RoutingRules:
- RoutingRuleCondition:

HttpErrorCodeReturnedEquals: '404'
KeyPrefixEquals: out1/

RedirectRule:
HostName: ec2-11-22-333-44.compute-1.amazonaws.com
ReplaceKeyPrefixWith: report-404/

NotificationConfiguration:
TopicConfigurations:
- Topic: 'arn:aws:sns:us-east-1:123456789012:TestTopic'
Event: 's3:ReducedRedundancyLostObject'

MacroParameters:
ExpandRegionToBucket: True
ExpandAccountIdToBucket: True

Settings:
EnvNames:

- bucket01
- BUCKET_ABCD-01

Services:
- name: app03

access: RWObjects

96 Chapter 27. x-s3

CHAPTER

TWENTYEIGHT

X-EFS

As described in the volumes documentation, in order to setup an AWS EFS Filesystem, you can either use the ECS
Plugin definition, which will let ECS Compose-X import and define default settings, or alternatively, you can define
your own settings using x-efs.

Attention: For more details around permissions and access to the filesystem, refer to Filesystem, Access Point
and services access

28.1 Syntax reference

volumes:
abcd:
x-efs:

Properties: {}
MacroParameters: {}
Settings: {}
Lookup: {}
Use: <str>

Hint: Even though x-efs is defined at the volumes level, at rendering time, a top level EFS stack will be created to
contain the various filesystems required to be shared access across services.

28.2 Properties

As usual, the Properties supported as equal to the properties you would define in native CloudFormation. Refer to the
AWS CFN EFS syntax reference for more details.

97

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-efs-filesystem.html

ECS Compose-X Documentation, Release 0.14.4

28.3 MacroParameters

However, AWS EFS has evolved since and some very tidy and neat features have emerged since, such as the EFS
Access Points.

As it is ECS Compose-X objective to abstract that complexity away from developers but retain the security to high
standards, we have implemented simple feature(s) to automatically enable using features such as IAM Authentication
to further control access.

28.3.1 EnforceIamAuth

Listing 1: Enable IAM Auth restriction

volumes:
abcd:
x-efs:

MacroParameters:
EnforceIamAuth: <True|False>

The purpose of IAM Authentication is to allow applications to authenticate against an EFS Access Point which will
allow for further security configuration, such as, setting UID/GID to use, among others.

But primarily this will allow connection to the EFS using the Task IAM Role as a way to authenticate a specific
application which can then translate into specific files access permissions.

When using IAM Authentication, this also enforces to use TLS between the client and the server, for increased security.

By enabling this feature, an access point will be created specifically for your services in the task definition, along with
the filesystem.

Attention: To use that feature, it is highly recommend to use the EFS Mount Helper

28.4 Settings

This might be one rare case where the generic EnvNames has no impact, given that the volume name is the only thing
that matters in this particular use-case. ECS Will automatically resolve the DNS name of the target in order to mount
the shared filesystem as a volume to the container.

28.4.1 Subnets

As for other services that require to be created in a VPC to be accessed (for EFS, via Mount Targets), you can override
the default behaviour (for EFS, defaults to the StorageSubnets).

98 Chapter 28. x-efs

https://docs.aws.amazon.com/efs/latest/ug/mounting-fs-mount-helper.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-efs-mounttarget.html

ECS Compose-X Documentation, Release 0.14.4

28.5 Lookup

As usual, the Plug N’ Play aspect of ECS Compose-X to your existing infrastructure is a key concern, therefore, you
can also use ECS Compose-X to identify dynamically AWS EFS which already exists.

volumes:
abcd:
x-efs:

Lookup:
Tags: []
RoleArn: <>

28.6 Use

If you did know your Filesystem ID in AWS EFS, and wanted to just pass it on as the value instead of using Lookup,
you can, either through use or through the original ECS Plugin definition.

Listing 2: ECS Plugin syntax

volumes:
abcd:
external: true
name: fs-abcd1234

Listing 3: ECS ComposeX Syntax

volumes:
abcd:
x-efs:

Use: fs-abcd1234

28.7 Examples

A full example using Bitnami Wordpress image (which requires users permissions etc. to be set) can be found in
GitHub

28.8 Filesystem, Access Point and services access

AWS EFS has a notion of Access Point, which are very well described in the docs and other blog articles on the
AWS sites. In a nutshell, they will allow you to control access to the Filesystem and “proxy” your access so that your
services can set use specific POSIX users and root folders to the filesystem

This comes in to be very important if you are using a shared EFS among multiple tenants (applications, services etc.)
and want to ensure separation for each but not have to spend hours configuring each service clients.

28.5. Lookup 99

https://github.com/compose-x/wordpress-demo

ECS Compose-X Documentation, Release 0.14.4

28.8.1 Access point per “container” within the task definition

In ECS Compose-X there is only so much that we can understand from the settings set at the volumes level. Given
ECS Compose-X tries to focus as much as possible on security, we have implemented the following:

• If your task definition only has 1 container definition, there is one volume created in the task level, used by
containers

• If there is more than one container definition and you defined a different user property for the service, a new
access point is created specifically for that container, added to the task definition.

Warning: Even with 1 access point per container in the task definition, the access remains at the task level for
IAM permissions.

100 Chapter 28. x-efs

CHAPTER

TWENTYNINE

X-APPMESH

• Syntax

• Properties

– MeshName

– MeshOwner

– EgressPolicy

• Settings

– nodes

* Syntax

* Examples

– routers

* Definition

* Syntax

* match

· Definition

· Syntax

· Example

– services

* Syntax

– Examples

• AWS AppMesh & AWS Cloud Map for services mesh & discovery

• Nodes

• Routers

– Services

– The other things ECS ComposeX takes care of for you

101

ECS Compose-X Documentation, Release 0.14.4

Warning: This module is still under development and we would love to get any feedback on the syntax and how
to make it easier.

29.1 Syntax

x-appmesh:
Properties:
MeshName: str
MeshOwner: str
EgressPolicy: str

Settings:
Nodes:

- <node>
Routers:

- <router>
Services:
- <service>

The properties for the mesh are very straight forward. Even though, the wish with ECS ComposeX is to keep the
Properties the same as the ones defined in CFN as much as possible, for AWS AppMesh, given the simplicity of the
properties, we are going with somewhat custom properties, mostly to allow for more features integration down the
line.

Warning: There is only one mesh that will be either created or used to deploy the services into.

x-appmesh:
Properties: {}
Settings: {}

29.2 Properties

29.2.1 MeshName

This is the name of the mesh. However, if you do not specify the MeshOwner, then the name is ignored and the root
stack name is used.

The MeshName is going to be used if you specify the MeshOwner, in case you are deploying into a Shared Mesh.

AllowedPattern: ^[a-zA-Z0-9+]+$

102 Chapter 29. x-appmesh

ECS Compose-X Documentation, Release 0.14.4

29.2.2 MeshOwner

The MeshOwner as described above, doesn’t need to be specified, if you are creating your Nodes, Routers and Services
(virtual ones) into a Mesh shared with you from another account.

AllowedPattern: [0-9]{12}

29.2.3 EgressPolicy

The mesh aims to allow services, nodes to communicate to each other only through the mesh. So by default, ECS
ComposeX sets the policy to DROP_ALL. Meaning, no traffic out of the nodes will be allowed if not to a defined
VirtualService in the mesh.

For troubleshooting and otherwise for your use-case, you might want to allow any traffic to get out of the node anyway.
If so, simply change the policy to ALLOW_ALL

AllowedValues: DROP_ALL, ALLOW_ALL

29.3 Settings

The settings section is where we are going to define how our services defined in Docker compose are going to integrate
to the mesh.

29.3.1 nodes

Syntax

Name: str # <family name>
Procotol str
Backends:

- <service_name> # Only services can be defined as backend

Examples

This section represents the nodes. The nodes listed here must be either a service as listed in docker-compose or a
family name.

Nodes:
- Name: app01
Procotol Http

- Name: app02
Procotol Tcp
Backends:

- service-abcd

29.3. Settings 103

ECS Compose-X Documentation, Release 0.14.4

29.3.2 routers

Definition

Routers as mentioned in the module description, are here to allow developers to define how packets should be routed
from one place to another.

For TCP ones, one can only really set timeout settings, in addition to TLS etc. However for Http, Http2 and gRPC it
allows you to define further more rules. The example below shows how a request to the router on path / it should send
requests with the POST method to app02, but requests with the GET method to app01.

Syntax

Name: str
Listener

Procotol str
port: int

Routes:
Http:
- <match>

match

This is simplistic version of the AWS Route Match specifications : HTTP Route, TCP Route

Definition

The match allows to define how to route packets to backend nodes

Syntax

Match:
Prefix: str

Method: str
Scheme:: str
Nodes:

- <node_name>

Example

Routers:
- Name: Httprouter
Listener

Procotol Http
port: 8080

Routes:
Http:
- Match:

Prefix: /

(continues on next page)

104 Chapter 29. x-appmesh

Https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-appmesh-route-Httproutematch.html
Https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-appmesh-route-Httproutematch.html

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Method: GET
Scheme:: Http
Nodes:
- app01

- Match:
Prefix: /

Method: POST
Nodes:
- app02

29.3.3 services

The VirtualServices are what acts as backends to nodes, and as receiver for nodes and routers. The Virtual Services
can use either a Node or a Router as the location to route the traffic to.

Syntax

Services:
- Node: <node_name>
Name: str

- Router: <router_name>
Name: str

Services:
- Name: service-xyz
Router: Httprouter

- Name: service-xyz
Node: app03

29.3.4 Examples

Simple mesh definition for new mesh of Services

x-appmesh:
Properties: {}
Settings:
Nodes:

- Name: app03
Protocol: Tcp

- Name: youtoo
Protocol: Http

- Name: bignicefamily
Protocol: Http
Backends:
- dateteller # Points to the dateteller Service, not Router!

Routers:
- Name: dateteller

Listener:
Port: 5000
Protocol: Http

(continues on next page)

29.3. Settings 105

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Routes:
Http:
- Match:

Prefix: /date
Method: GET
Scheme: Http

Nodes:
- Name: youtoo
Weight: 1

- Name: datetellertcp
Listener:
Port: 5000
Protocol: Tcp

Routes:
Tcp:
- Nodes:

- Name: app03
Weight: 1

Services:
- Name: api

Node: bignicefamily
- Name: dateteller

Router: dateteller

29.4 AWS AppMesh & AWS Cloud Map for services mesh & discovery

AWS AppMesh is a service mesh which takes care of routing your services packets logically among the different
nodes. What this allows you to do, it to explicitly declare which services have access to others, either on http, tcp or
gRPC.

See also:

ComposeX x-appmesh syntax reference

Note: For HTTP, it supports both http2 and http.

There are a lot more features to know about, so I would recommend to head to the AWS Appmesh official documen-
tation.

Warning: At the time of working on this feature, mutualTLS is not available, for lack of $$ to use AWS ACM
CA and do the dev work.

Warning: By default in ECS ComposeX, the EGRESS policy for nodes it to DROP_ALL so that only explicitly
allowed traffic can go across the mesh, in/out the services.

106 Chapter 29. x-appmesh

https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html

ECS Compose-X Documentation, Release 0.14.4

29.5 Nodes

The nodes are a logical construct to indicate an endpoint. With ECS ComposeX, it will either be

• a service defined and deployed in ECS

• a database

• any DNS discoverable target.

When you enable AWS AppMesh in ECS ComposeX, it will automatically add all the necessary resources for your
ECS task to work correctly:

• envoy container

• update task definition with proxy configuration

• add IAM permissions for envoy to discover services and the mesh settings.

29.6 Routers

Routers are logical endpoints that apply the logic you define into routes. For TCP routers, it mostly is about defining
TCP settings, such as timeouts.

For HTTP and gRPC however, it is far more advanced. You can define routes based on path, method etc. I also can
perform healthcheck for you, to evaluate the nodes health. It effectively is a virtual ALB listener with a long set of
rules.

Note: From experimenting and testing however, you cannot mix routes protocols within the same router.

29.6.1 Services

The virtual services are once again, a logical pointer to a resource. That resource will either be a Node or a Router.
But again, it is aimed to be a virtual pointer, therefore, you do not need to call your virtual service with the same
name as one of the services defined in the compose services.

What does that mean?

In essence, when you define a VirtualService as the backend of a virtual node, this means this node and its services
will be granted access to the nodes of the VirtualService itself. But, you might have called your services clock and
watch, and yet the virtual service will be called time.

Problem: when trying to connect to the endpoint time, your application won’t be able to resolve time. Solution: ECS
ComposeX will create a virtual service in the same AWS CloudMap as where the ECS Services are registered, and
create a fake instance of it, for which the IPv4 address will be 169.254.255.254 How does it work?: your microservice
in ECS will try to resolve time. The DNS response will be an IP address, here, 169.254.255.254. Which obviously
does not exist in a VPC (see RFC 3927 for more details) but, it will allow your application to establish the connection.
The connection is intercepted by the envoy proxy container, which internally figures out, where to connect and how.
It will then take your package, and send it across to the destination, to the right IP address. Which is why resolving
the IP in DNS is important, but the value of the record is not.

29.5. Nodes 107

https://tools.ietf.org/html/rfc3927

ECS Compose-X Documentation, Release 0.14.4

29.6.2 The other things ECS ComposeX takes care of for you

In addition to configuring the ECS Task definition appropriately etc, ECS ComposeX also will take care of the security
groups opening between the Virtual Nodes, and to other backends.

Yes, a mesh with DROP_ALL will ensure that communication between nodes only happens if explicitly allowed, but
this does not mean we should not also keep the underlying network in check.

The security group inbound rule defined is from the source node to the target node(s), allowing all traffic for now
between the nodes.

Note: For troubleshooting, you can use the ClusterWide Security Group which is attached to all containers deployed
with ECS ComposeX, and allow all traffic within the security group to allow your ECS Services to communicate.

108 Chapter 29. x-appmesh

CHAPTER

THIRTY

X-DNS

Allows you to indicate what the DNS settings shall be for the deployment of your containers.

30.1 Syntax

Listing 1: Private Namespace definition (Uses AWS CloudMap)

PrivateNamespace:
Name: str # TLD to use for the deployment.
Lookup: str # Domain name to find in CloudMap
Use: str # Expects the CloudMap ns- namespace ID

Warning: This domain will be associated with the VPC Route53 “database”. If another Namespace using the
same domain name already is associated with the VPC, this will fail.

Listing 2: Public DNS Zone using Route53.

PublicZone:
Name: str # TLD to use for the deployment.
Lookup: str # Domain name to find in CloudMap
Use: str # Expects the CloudMap Z[A-Z0-9]+- Hosted Zone Id

Attention: For ACM DNS Validation and other validations to work, the zone must be able to be resolved.

30.2 Examples

Listing 3: Private definition only

x-dns:
PrivateNamespace:
Name: mycluster.lan

109

ECS Compose-X Documentation, Release 0.14.4

Listing 4: Public Zone and private zone

x-dns:
PrivateNamespace:
Name: mycluster.lan
Use: ns-abcd012344

PublicZone:
Name: public-domain.net
Use: Z0123456ABCD

110 Chapter 30. x-dns

CHAPTER

THIRTYONE

X-ELBV2

This module allows you to define Application and Network Load-Balancers (Gateways not tested yet), and define
which of your services should receive traffic, and add settings such as health check etc.

31.1 Syntax

x-elbv2:
lbA:
Properties: {}
MacroParameters: {}
Services: []

- name: str
protocol: str
port: int
healthcheck: str

Listeners: []

31.2 Properties

For this particular resource, the only attributes that match the CFN definition that ECS Compose-X will import are

• Scheme

• Type

• LoadBalancerAttributes

All other settings are automatically generated for you based on the network and security definitions you have defined
in the services and targets section.

Subnets associations can be overridden in the Settings.Subnets section. See Subnets for more details.

Hint: For Application Load Balancers, a new security group will be created automatically. Subnets are selected
automatically based on the scheme you indicated. If selected a public NLB, the EIP addressed will automatically be
provisioned too.

111

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-scheme
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-type
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-loadbalancerattributes

ECS Compose-X Documentation, Release 0.14.4

31.3 MacroParameters

Listing 1: ELBv2 Macro Parameters

timeout_seconds: int
desync_mitigation_mode: str
drop_invalid_header_fields: bool
http2: bool
cross_zone: bool
Ingress: {}

31.3.1 Ingress

Similar syntax as for ECS Services Ingress, allow you to define Ingress.

Tip: When using NLB, ingress must be defined at the service level, as NLB do not have a SecurityGroup

Listing 2: Ingress Syntax

Ingress:
ExtSources: []
AwsSources: []

Listing 3: ExtSources syntax

ExtSources:
- Name: str (if any non alphanumeric character set, will be deleted)
Description: str
IPv4: str

Listing 4: AwsSources syntax

AwsSources:
- Type: SecurityGroup|PrefixList (str)
Id: sg-[a-z0-9]+|pl-[a-z0-9]+
Lookup: {}

Tip: You can use either Id or Lookup to identify the SecurityGroups. Check out the Lookup syntax reference

31.3.2 Other attribute shortcuts

These settings are just a shorter notation for the LB Attributes

Shorthand AttributeName LB Type
timeout_seconds idle_timeout.timeout_seconds ALB
desync_mitigation_mode routing.http.desync_mitigation_mode ALB
drop_invalid_header_fields routing.http.drop_invalid_header_fields.enabled ALB
http2 routing.http2.enabled ALB
cross_zone load_balancing.cross_zone.enabled NLB

112 Chapter 31. x-elbv2

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-loadbalancerattributes

ECS Compose-X Documentation, Release 0.14.4

31.4 Services

This follows the regular pattern of having the name of the service and access, only this time in a slightly different
format. The services represent the Target Group definition of your service. Once again, in an attempt to keep things
simple, you do not have to indicate all of the settings exactly as CFN does.

The Targets will automatically be pointing towards the ECS Service tasks.

31.4.1 name

Given that you can now re-use one of the service in the docker-compose file multiple times for multiple ECS Services
in multiple Task definitions, and ECS to ELBv2 supports to route traffic to a specific container in the task definition,
you have to indicate the service name in the following format

name: <family_name>:<service_name>
name: youtoo:app01
name: app03:app03

Hint: If you service is not associated to a family via deploy labels, the family name is the same as the service name.

31.4.2 protocol

The Target Group protocol

31.4.3 port

The port of the target to send the traffic to

Hint: This port is the port used by the Target Group to send traffic to, which can be different to your healthcheck
port.

31.4.4 healthcheck

The healthcheck properties can be defined in the same fashion as defined in the Target Group definition. However, it
is also possible to shorten the syntax into a simple string

(port:protocol)(:healthy_count:unhealthy_count:intervals:timeout)?(:path:http_codes)?

Note: The last part, for path and HTTP codes, is only valid for ALB

31.4. Services 113

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html

ECS Compose-X Documentation, Release 0.14.4

31.5 Listeners

You can define in a very simple way your Listener definition and cross-reference other resources, here, the services
and ACM certificates you might be creating.

It has its own set of properties, custom to ECS ComposeX.

The following properties are identical to the original CFN definition.

• Port

• Protocol

• SslPolicy

• Certificates

Hint: For certificates, you can also use x-acm to refer to an ACM certificate you are creating with this stack. It will
automatically import the Certificate ARN and map it once created.

Hint: You can re-use the same ACM certificate defined in x-acm for multiple listeners. Make sure to have all the Alt.
Subjects you need!

Warning: The certificate ARN must be valid when set, however, we are not checking that it actually exists.(yet)

31.6 Target Groups

List of targets to send the requests to. These are equivalent to ELBv2::TargetGroup

name: <service_name> ie. app03:app03
access: <domain name and or path> ie. domain.net/path
cognito_auth: AuthenticateCognitoConfig

This represents the targets and simultaneously the Listener Rules to apply so that you can point to multiple services at
once and implement these rules.

31.6.1 name

The name of the family and service in that family to send the requests to.

114 Chapter 31. x-elbv2

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-port
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-protocol
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-sslpolicy
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-certificates

ECS Compose-X Documentation, Release 0.14.4

31.6.2 access

Allows you to define the conditions based on the path or domain name (or combination of both) that should be in place
to forward requests.

If you only define the domain name, any path in that domain will be what’s matched.

31.6.3 AuthenticateCognitoConfig

Defines the AuthenticateCognitoConfig requirement condition / action

31.6.4 AuthenticateOidcConfig

Similar to AuthenticateCognitoConfig but for OIDC providers. This allows to respect all the AuthenticateOidcConfig
Properties as per CFN definition.

Tip: We highly recommend that you store the OIDC details into a secret in secrets manager!

Hint: For both AuthenticateCognitoConfig and AuthenticateOidcConfig, the rules defined in access will be set to
come after the authenticate action.

31.7 Examples

ELBv2 creation for services

x-dns:
PublicZone:
Name: lambda-my-aws.io
Use: ZABCDEFGHIS0123

x-acm:
public-acm-01:
Properties:

DomainName: test.lambda-my-aws.io
DomainValidationOptions:
- HostedZoneId: ZABCDEFGHIS0123
DomainName: test.lambda-my-aws.io

SubjectAlternativeNames:
- anothertest.lambda-my-aws.io
- yet.another.test.lambda-my-aws.io

ValidationMethod: DNS

x-elbv2:
lbA:
Properties:

Type: application
MacroParameters:

(continues on next page)

31.7. Examples 115

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig.html#cfn-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig-userpoolarn
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig.html#cfn-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig-userpoolarn
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticateoidcconfig.html

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

S3Logs: bucket:/prefix
timeout_seconds: 60
desync_mitigation_mode: defensive
drop_invalid_header_fields: True
http2: False
cross_zone: True
Ingress:
ExtSources:
- Ipv4: "0.0.0.0/0"
Description: ANY

- Ipv4: "1.1.1.1/32"
Description: CLOUDFLARE
Name: CLOUDFLARE

Listeners:
- Port: 80

Protocol: HTTP
DefaultActions:
- Redirect: HTTP_TO_HTTPS

- Port: 443
Protocol: HTTP
Certificates:
- x-acm: public-acm-01

Targets:
- name: bignicefamily:app01
access: /somewhere

- Port: 8080
Protocol: HTTP
Certificates:
- x-acm: public-acm-01
- CertificateArn: arn:aws:acm:eu-west-1:012345678912:certificate/102402a1-

→˓d0d2-46ff-b26b-33008f072ee8
Targets:
- name: bignicefamily:rproxy
access: /

- name: youtoo:rproxy
access: /stupid

- name: bignicefamily:app01
access: thereisnospoon.ews-network.net:8080/abcd/test.html

Services:
- name: bignicefamily:rproxy

port: 80
healthcheck: 5000:HTTP:/healthcheck:200,201

- name: bignicefamily:app01
port: 5000
healthcheck: 5000:HTTP:/path/to/healthcheck:200,201

- name: youtoo:rproxy
port: 80
healthcheck: 5000:HTTP:5:2:15:3:/ping.This.Method:200,201

lbC:
Properties:
Scheme: internet-facing
Type: network

MacroParameters:
cross_zone: True

Settings: {}
(continues on next page)

116 Chapter 31. x-elbv2

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Listeners:
- Port: 8080

Protocol: TCP
Targets:
- name: app03:app03
access: /

- Port: 8081
Protocol: TCP
Certificates:
- x-acm: public-acm-01

Targets:
- name: app03:app03
access: /

Services:
- name: app03:app03

port: 5000
healthcheck: 5000:TCP:7:2:15:5
protocol: TCP

Listing 5: ELBv2 with

x-elbv2:
authLb:
Properties:

Scheme: internet-facing
Type: application

Settings: {}
Listeners:

- Port: 8080
Protocol: HTTP
Targets:
- name: app03:app03
access: /

- Port: 8081
Protocol: HTTP
Targets:
- name: app03:app03
access: /
AuthenticateOidcConfig:

Issuer: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:Issuer}}"

AuthorizationEndpoint: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:AuthorizationEndpoint}}"

TokenEndpoint: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:TokenEndpoint}}"

UserInfoEndpoint: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:UserInfoEndpoint}}"

ClientId: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:ClientId}}"

ClientSecret: "{{resolve:secretsmanager:/oidc/azuread/
→˓app001:SecretString:ClientSecret}}"

SessionCookieName: "my-cookie"
SessionTimeout: 3600
Scope: "email"
AuthenticationRequestExtraParams":
display": "page"

(continues on next page)

31.7. Examples 117

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

prompt": "login"
OnUnauthenticatedRequest: "deny"

Services:
- name: app03:app03

port: 5000
healthcheck: 5000:HTTP:7:2:15:5
protocol: HTTP

118 Chapter 31. x-elbv2

CHAPTER

THIRTYTWO

X-ACM

This module to allow people to create ACM certificates, auto-validate these with their DNS registration, and front their
applications with HTTPS.

Hint: Recently got supported by CloudFormation to natively add the CNAME entry to your Route53 DNS record as
the certificate is created, removing the manual validation process.

32.1 Syntax

x-acm:
certificate-01:
Properties: {} # AWS CFN Properties
MacroParameters: {} # ComposeX Macro parameters for ACM

Warning: You cannot be creating your public DNS Zone and validating it at the same time, simply because the
NS servers of you new Public Zone are not registered in your DNS registra. Therefore, DNS validation would
never work. Make sure that if you are creating a new DNS PublicZone, you will be able to use it!

32.2 Properties

The properties will be supported exactly like in the native AWS ACM Properties

Hint: If you defined multiple SubjectAlternativeNames names, they will be auto-added to the validation list and
use the same ZoneId, so you do not need to list them all in DomainValidationOptions

119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-certificatemanager-certificate.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-certificatemanager-certificate.html#cfn-certificatemanager-certificate-domainvalidationoptions

ECS Compose-X Documentation, Release 0.14.4

32.3 MacroParameters

In the aspiration of making things easy, you can now simply define very straight forward settings to define your
certificate. This automatically creates the full ACM Certificate definition, and uses DNS validation.

DomainNames:
- domain.tld
- sub.domain.tld

HostedZoneId: ZoneID

32.3.1 DomainNames

List of the domain names you want to create the ACM Certificate for.

Hint: The first domain name will be used for the CN, and the following ones will be used for SubjectAlternative
names

32.3.2 HostedZoneId

If you wish to override the x-dns/PublicZone settings you can set that here.

Note: That HostedZone ID will be used for all of the Domain Validation.

32.4 Services

No need to indicate services to assign the ACM certificate to. Refer to x-elbv2 for mapping to ALB/NLB.

32.5 Example

x-acm:
public-acm-01:
Properties:

DomainName: test.lambda-my-aws.io
DomainValidationOptions:
- HostedZoneId: ZABCDEFGHIS0123
DomainName: test.lambda-my-aws.io

SubjectAlternativeNames:
- anothertest.lambda-my-aws.io
- yet.another.test.lambda-my-aws.io

ValidationMethod: DNS

Hint: If you need to specify x-dns in the template and provide the HostedZoneId which will be used there. DNS
Reference: x-dns

120 Chapter 32. x-acm

CHAPTER

THIRTYTHREE

X-KINESIS

This module helps you create new Kinesis Data Streams supporting all the AWS CFN properties and link these streams
to your services.

33.1 Syntax reference

Listing 1: x-kinesis Syntax reference

x-kinesis:
stream:
Properties: {} # AWS Kinesis CFN definition
Settings: {}
MacroParameters: {}
Services: []

33.2 Properties

The Properties are the AWS CFN definition for AWS Kinesis streams.

33.3 MacroParameters

No specific MacroParameters for Kinesis data streams. Given the AWS definition is very straightforward, just define
the properties. The only truly required property is the ShardCount

33.4 Settings

The settings are as usual, allow you to define EnvNames

121

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-stream.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-stream.html#cfn-kinesis-stream-shardcount

ECS Compose-X Documentation, Release 0.14.4

33.4.1 EnvNames

List of String that allow you to define multiple environment names for the stream to be exposed to your service. Value
for these is the AWS Kinesis Stream name (Default value returned by Fn::Ref

33.5 Services

As per the generic Services definition, we have a list of object, name and access, which define how the service can
access the stream.

For AWS Kinesis streams, we have the following permissions.

• Producer

• Consumer

• PowerUser

33.6 Examples

Listing 2: Services definition example

services: [serviceA, serviceB]

x-kinesis:
streamA:
Properties:

ShardCount: 2
Services:

- name: serviceA
access: Producer

- name: serviceB
access: Consumer

33.7 IAM permissions

Listing 3: IAM permissions pre-defined for your services.

{
"Consumer": {

"Effect": "Allow",
"Action": [

"kinesis:Get*",
"kinesis:DescribeStreamSummary"

]
},
"Producer": {

"Effect": "Allow",
"Action": [

"kinesis:PutRecord"
]

},
(continues on next page)

122 Chapter 33. x-kinesis

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

"PowerUser": {
"Effect": "Allow",
"NotAction": [

"kinesis:CreateStream",
"kinesis:DeleteStream"

]
}

}

33.7. IAM permissions 123

ECS Compose-X Documentation, Release 0.14.4

124 Chapter 33. x-kinesis

CHAPTER

THIRTYFOUR

X-SQS

34.1 Define your AWS SQS Queues and service scaling based on
messages queue depth

34.1.1 Syntax

Listing 1: SNS Syntax Reference

x-sns:
QueueA:
Properties: {}
Settings: {}
Services: []

34.1.2 Properties

Mandatory Properties

SQS does not require any properties to be set in order to create the queue. No settings are mandatory.

Special properties

It is possible to define Dead Letter Queues for SQS messages (DLQ). It is possible to easily define this in ECS
ComposeX simply by referring to the name of the queue, deployed in this same deployment.

Warning: It won’t be possible to import a queue ARN at this time in ECS ComposeX that exists outside of the
stack today.

125

ECS Compose-X Documentation, Release 0.14.4

34.1.3 Services

Similar to all other modules, we have a list of dictionaries, with two keys of interest:

• name: the name of the service as defined in services

• access: the type of access to the resource.

• scaling: Allow to define the scaling behaviour of the service based on SQS Approximate Messages Visible.

IAM Permissions

• RO - read only

• RWMessages - read/write messages on the queue

• RWPermissions - read/write messages and grants access to modify some queue attributes

Tip: IAM policies, are defined in sqs/sqs_perms.json

Hint: You can also use AWS SAM Permissions as defined in AWS Documentation

Listing 2: SAM Policy Example

services:
serviceA: {}

x-sqs:
QueueA:
Services:

- name: serviceA
access: SQSPollerPolicy

34.1.4 Lookup

See Lookup for more details about Lookup.

x-sqs:
QueueA:
Lookup:

Tags:
- Name: queue-a-123
- owner: app01

126 Chapter 34. x-sqs

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html

ECS Compose-X Documentation, Release 0.14.4

34.1.5 Scaling

You can now defined StepScaling on the ECS Service based on the number of messages in the queue!

Listing 3: Scaling Syntax

scaling:
steps:
- lower_bound: int

upper_bound: int
count: int

scaling_in_cooldown: int
scaling_out_cooldown: int

Tip: You can define scaling rules on SQS Queues that you are importing via Lookup

Attention: If you already setup other Scaling policies for the service, beware of race conditions!

34.1.6 Special Features

Redrive policy

The redrive policy works exactly as you would expect it and is defined in the exact same way as for within the SQS
proprties. Only, here, you only need to put the queue name of the DLQ. The generated ARN etc. will be fetched via
exports (which also implicitly adds a lock on it).

Example with DLQ:

x-sqs:
DLQ:
Properties: {}
Settings: {}
Services: []

AppQueue:
Properties:
RedrivePolicy:

deadLetterTargetArn: DLQ
maxReceiveCount: 10

Settings:
EnvNames:

- APPQUEUE01

34.1. Define your AWS SQS Queues and service scaling based on messages queue depth 127

ECS Compose-X Documentation, Release 0.14.4

34.1.7 Settings

Refer to Settings

34.1.8 Examples

Listing 4: Simple SQS Queues with DLQ configured

x-sqs:
Queue02:
Services:

- name: app02
access: RWPermissions

- name: app03
access: RO

Properties:
RedrivePolicy:

deadLetterTargetArn: Queue01
maxReceiveCount: 10

Settings:
EnvNames:

- APP_QUEUE
- AppQueue

Queue01:
Services:

- name: app03
access: RWMessages

Properties: {}
Settings:

EnvNames:
- DLQ
- dlq

Listing 5: SQS Queue with scaling definition

x-sqs:
QueueA:
Services:

- name: abcd
access: RWMessages
scaling:
ScaleInCooldown: 120
ScaleOutCooldown: 60
steps:
- lower_bound: 0
upper_bound: 10
count: 1 # Gives you 1 container if there is between 0 and 10 messages

→˓in the queue.
- lower_bound: 10
upper_bound: 100
count: 10 # Gives you 10 containers if you have between 10 and 100

→˓messages in the queue.
- lower_bound: 100
count: 20 # Gives you 20 containers if there is 100+ messages in the

→˓queue

128 Chapter 34. x-sqs

ECS Compose-X Documentation, Release 0.14.4

Note: The last step cannot have defined a upper_bound. If you set one, it will be automatically be removed.

Note: You need to have defined x-configs/scaling/Range to enable step scaling on the ECS Service.

34.1. Define your AWS SQS Queues and service scaling based on messages queue depth 129

ECS Compose-X Documentation, Release 0.14.4

130 Chapter 34. x-sqs

CHAPTER

THIRTYFIVE

X-SNS

35.1 Syntax

Listing 1: x-sns syntax reference

x-sns:
Topics:
TopicA:

Properties: {}
Settings: {}
Services: []

Subscriptions:
SubscriptionA:

Properties: {}
Settings: {}
Topics: []

Warning: At this current version, Subscriptions are not supported.

35.2 Properties

Refer to AWS SNS Topic Documentation for SNS Topics

35.3 Lookup

Lookup is currently implemented for SNS topics!

131

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html

ECS Compose-X Documentation, Release 0.14.4

35.4 Examples

Listing 2: Create new topics

x-sns:
Topics:
abcd:

Properties: {}
Services:
- name: app01
access: Publish

- name: you-too
access: Publish

Listing 3: Create and Lookup SNS topics

x-sns:
Topics:
abcd:

Properties: {}
Services:
- name: app01
access: Publish

- name: you-too
access: Publish

hello:
Lookup:

Tags:
- costcentre: lambda
- composexdev: "yes"

Services:
- name: app03
access: Publish

132 Chapter 35. x-sns

CHAPTER

THIRTYSIX

X-EVENTS

This extension allows you to define an AWS EventBride rule to stop start services at specific times of the day or based
on specific events.

36.1 Properties

You can find all the properties on the AWS CFN Events Rules definitions.

Note: You do not need to define Targets to point to the services defined in docker-compose. Refer to Services for
that.

36.2 MacroParameters

No specific parameters at this time!

36.3 Settings

No specific settings at this time!

36.4 Services

There we define the tasks we want to deploy at specific times or events.

Listing 1: Services syntax for rules

name: service_name
TaskCount: <N>
DeleteDefaultService: True/False (default. False)

133

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html

ECS Compose-X Documentation, Release 0.14.4

36.4.1 name

Here we want to define the name of the family we want to use for trigger. If the service is not defined as part of a
specific family, you can use the service name itself.

See also:

Required: Yes.

36.4.2 TaskCount

Same property as for ECS Parameters of the Task Rule target definition itself, this allows you to set a specific number
of tasks.

Required: Yes.

Hint: Not using deploy/replicas on purpose, because of the DeleteDefaultService option

36.4.3 DeleteDefaultService

Custom setting, this allows you to NOT define a ECS Service along with the task, therefore you will only get the
TaskDefinition created.

134 Chapter 36. x-events

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html

CHAPTER

THIRTYSEVEN

X-KMS

37.1 Syntax

x-kms:
keyA:
Properties: {}
Settings: {}
Services: []
Lookup: {}

37.2 Properties

See AWS CFN KMS Key Documentation

37.3 Settings

37.3.1 Alias

In addition to EnvNames, for KMS, we also have Alias which will create an Alias along with the KMS Key. The alias
name must be a string, not starting with alias/aws or aws. If you specify a an alias starting with alias/ then the string
will be used as is, if you only specify a short name, then the alias will be prefixed with the RootStack name and region.

37.4 Examples

Listing 1: Simple key creation and link to services

x-kms:
keyA:
Properties:

PendingWindowInDays: 14
Services:

- name: serviceA
access: EncryptDecrypt

- name: serviceB
access: EncryptDecrypt

(continues on next page)

135

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Settings:
Alias: keyA

37.5 Services

List of key/pair values, as for other ECS ComposeX x-resources.

Three access types have been created for the table:

• EncryptDecrypt

• EncryptOnly

• DecryptOnly

• SQS

Listing 2: KMS and Services

x-kms:
keyA:
Properties: {}
Services:

- name: serviceA
access: EncryptDecrypt

- name: serviceB
access: DecryptOnly

37.6 IAM Permissions

Three access types have been created for the table:

• EncryptDecrypt

• EncryptOnly

• DecryptOnly

• SQS

Listing 3: KMS Permissions scaffold

{
"SQS": {

"Action": [
"kms:GenerateDataKey",
"kms:Decrypt"

],
"Effect": "Allow"

},
"DecryptOnly": {

"Action": [
"kms:Decrypt"

],
"Effect": "Allow"

(continues on next page)

136 Chapter 37. x-kms

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

},
"EncryptOnly": {

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey*",
"kms:ReEncrypt*"

],
"Effect": "Allow"

},
"EncryptDecrypt": {

"Action": [
"kms:Encrypt",
"kms:Decrypt",
"kms:ReEncrypt*",
"kms:GenerateDataKey*",
"kms:CreateGrant",
"kms:DescribeKey"

],
"Effect": "Allow"

}
}

37.6. IAM Permissions 137

ECS Compose-X Documentation, Release 0.14.4

138 Chapter 37. x-kms

CHAPTER

THIRTYEIGHT

X-VPC

38.1 Define a new VPC for your services or use an existing one

38.1.1 Syntax Reference

x-vpc:
Create: {}
Lookup: {}
Use: {}

Create

Listing 1: Create example with a single NAT and 3 VPC Endpoints

x-vpc:
Create:
SingleNat: true
VpcCidr: 172.6.7.42/24
Endpoints:

AwsServices:
- service: s3
- service: ecr.api
- service: ecr.dkr

VpcCidr

The CIDR you want to use. Default is 100.127.254.0/24.

SingleNat

Whether you want to have 1 NAT per AZ for your application subnets. Reduces the costs for dev environments!

139

ECS Compose-X Documentation, Release 0.14.4

Endpoints

List of VPC Endpoints from AWS Services you want to create. Default will create Endpoints for ECR (DKR and
API).

EnableFlowLogs

Whether you want to have a VPC Flow Log created for the VPC. It will create a new LogGroup and IAM Role to
allow logging to CloudWatch.

FlowLogsRoleBoundary

For those of you who require IAM PermissionsBoundary for your IAM Roles, this allows to set the boundary. If it
starts with arn:aws it will assume this is a valid ARN, otherwise, it will use the value as policy name.

38.1.2 Lookup

x-vpc:
Lookup:
VpcId:

Tags:
- key: value

PublicSubnets:
Tags:
- vpc::usage: public

AppSubnets:
Tags:
- vpc::usage: application

StorageSubnets:
Tags:
- vpc::usage: storage0

Warning: When using Use or Lookup you MUST define all 4 settings: * VpcId * StorageSubnets * AppSubnets
* PublicSubnets

Warning: When creating newly defined subnets groups, the name must be in the format ^[a-zA-Z0-9]+$

Hint: You can define extra subnet groups based on different tags and map them to your services for override when
using Lookup or Use

Listing 2: Extra subnets definition

x-vpc:
Lookup:
VpcId: {}
AppSubnets: {}
StorageSubnets: {}

(continues on next page)

140 Chapter 38. x-vpc

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

PublicSubnets: {}
Custom01:

Tags: {}

networks:
custom01:
x-vpc: Custom01

services:
serviceA:
networks:

- custom01

38.1.3 Use

x-vpc:
Use:
VpcId: vpc-id
AppSubnets:

- subnet-id
- subnet-id

StorageSubnets:
- subnet-id
- subnet-id

PublicSubnets:
- subnet-id
- subnet-id

38.1.4 Default VPC Network design

The design of the VPC generated is very simple 3-tiers:

• Public subnets, 1/4 of the available IPs of the VPC CIDR Range

• Storage subnets, 1/4 of the available IPs of the VPC CIDR Range

• Application subnets, 1/2 of the available IPs of the VPC CIDR Range

Default range

The default CIDR range for the VPC is 100.127.254.0/24 This leaves a just under 120 IP address for the EC2 hosts
and/or Docker containers.

Hint: The range can be changed via VpcCidr but not the structure detailed above. Works for all RFC 1918 and the
100.64.0.0/10 ranges.

38.1. Define a new VPC for your services or use an existing one 141

ECS Compose-X Documentation, Release 0.14.4

142 Chapter 38. x-vpc

CHAPTER

THIRTYNINE

X-CLUSTER

This section allows you to define how you would like the ECS Cluster to be configured. It also allows you to define
Lookup to use an existing ECS Cluster.

39.1 Properties

Refer to the AWS CFN reference for ECS Cluster

Listing 1: Override default settings

x-cluster:
Properties:
CapacityProviders:

- FARGATE
- FARGATE_SPOT

ClusterName: spotalltheway
DefaultCapacityProviderStrategy:
- CapacityProvider: FARGATE_SPOT

Weight: 4
Base: 2

- CapacityProvider: FARGATE
Weight: 1

39.2 Lookup

Allows you to enter the name of an existing ECS Cluster that you want to deploy your services to.

Listing 2: Lookup existing cluster example.

x-cluster:
Lookup:
Tags:

- name: clusterabcd
- costcentre: lambda

Warning: If the cluster name is not found, by default, a new cluster will be created with the default settings.

143

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html

ECS Compose-X Documentation, Release 0.14.4

39.3 Use

This key allows you to set a cluster to use, that you do not wish to lookup, you just know the name you want to use.
(Useful for multi-account where you can’t lookup cross-account).

144 Chapter 39. x-cluster

CHAPTER

FORTY

X-ALARMS

Listing 1: Syntax reference

x-alarms:
alarm-01:
Properties: {}
MacroParameters: {}
Settings: {}
Services: []
Topics: []

40.1 Properties

ECS Compose-X will automatically detect whether your properties define an Alarm or a Composite Alarm.

See AWS CW Alarms definition and AWS CW Composite Alarms definition

Attention: When linking to Services and/or Topics, the OKActions, AlarmActions will be overridden accordingly.

Attention: You can only create new alarms. To use existing alarms with new services would required to modify
the actions of that alarm, which would be an external change to any IaC.

40.2 MacroParameters

For x-alarms, MacroParameters is here to help define in a simpler way a composite alarm. More specifically, all you
have to define is the Alarm expression

MacroParameters:
CompositeExpression: <str>

145

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html

ECS Compose-X Documentation, Release 0.14.4

40.2.1 CompositeExpression

String with a logical high level expression of the composite alarm.

Hint: In your expression, use the alarm name as defined in the compose file, not using the AlarmName property!
ECS Compose-X will automatically map to the CFN Alarm being created.

40.3 Services

x-alarms:
kafka-scaling-01:
Properties: {}
Services:

- name: <str>
access: <str>
scaling: {} # Service scaling definition

40.4 Topics

Listing 2: Topics syntax

x-alarms:
alarms-01:
Properties: {}
Topics:

- TopicArn: <str>
NotifyOn: okay

- x-sns: <str>
NotifyOn: all

40.4.1 TopicArn

A string representing the topic ARN. The topic ARN must be valid (will be validated).

40.4.2 x-sns

Allows you to define a SNS topic that was defined in compose-x files already. Supports new created topics and topics
found via Lookup.

146 Chapter 40. x-alarms

ECS Compose-X Documentation, Release 0.14.4

40.4.3 NotifyOn

This allows you to determine whether the messages should be published based on the alarm status.

Value Alarm actions
all OKActions

AlarmActions
alarm AlarmActions
okay OKActions

40.5 Examples

Listing 3: Alarm with scaling actions for service

x-alarms basic use-case

x-alarms:
alarm-01:
Properties:

ActionsEnabled: True
AlarmDescription: A simple CW alarm
ComparisonOperator: GreaterThanOrEqualToThreshold
DatapointsToAlarm: 1
Dimensions:

- Name: Cluster
Value: DEV

- Name: Topic
Value: sainsburys.data.price-specification.batch.v1

- Name: ConsumerGroup
Value: sainsburys.applications.sc-dis.price-specification.retail-price.aut-

→˓test-consumer
EvaluationPeriods: 5
MetricName: TotalLagForTopicAndConsumerGroup
Namespace: lag-metrics-v4
Period: 60
Statistic: Sum
Threshold: 1.0
TreatMissingData: notBreaching

Services:
- name: app03

access: NA
Scaling:
scaling_in_cooldown: 300
scaling_out_cooldown: 60
steps:
- lower_bound: 0
upper_bound: 1000
count: 1

- lower_bound: 1000
upper_bound: 10000
count: 3

(continues on next page)

40.5. Examples 147

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

Topics:
- TopicArn: arn:aws:sns:eu-west-1:012346578900:topic/sometopic
- x-sns: topic-01

x-sns:
Topics:
topic-01:

Properties: {}

Listing 4: Example CompositeAlarm with MacroParameters

x-alarms:
alarm-01:
Properties {}

alarm-02:
Properties: {}

composite-alarm:
MacroParameters:
CompositeExpression: ALARM(alarm-01) and ALARM(alarm-02)

Hint: When the alarms is only for the service, the alarm gets created in the same stack as the service(s). When the
alarm has both services and topics, the alarms are created in a separate stack.

Hint: When defining a composite alarm, the actions defined in Services or Topics are ignored.

148 Chapter 40. x-alarms

CHAPTER

FORTYONE

SPOT_CONFIG

This module is not strictly a module which the same settings as the other AWS resources. This is a module which
allows users to create the EC2 compute resources necessary to run the ECS Containers on top of EC2 workloads.

Note: At this point in time, there is no support for creating Capacity providers in CloudFormation, therefore we
cannot implement that functionality.

Note: By default, everything is built to use EC2 spot fleet, simply to save money on deployment for testing. Future
will allow to run pure OnDemand or hybrid mode.

41.1 Define settings in the configs section

At the moment, the settings you can change for the compute definition of your EC2 resources are defined in

configs -> globals -> spot_config

Example:

x-configs:
spot_config:
bid_price: 0.42
use_spot: true
spot_instance_types:
m5a.xlarge:

weight: 4
m5a.2xlarge:

weight: 8
m5a.4xlarge:

weight: 16

With the given AZs of your region, it will create automatically all the overrides to use the spot instances.

Note: This spotfleet comes with a set of predefined Scaling policies, in order to further reduce cost or allow for
scaling out based on EC2 metrics.

Warning: We cannot recommend any more to use AWS Fargate and configure your capacity providers instead of
EC2 instances. Use with caution

149

ECS Compose-X Documentation, Release 0.14.4

150 Chapter 41. spot_config

CHAPTER

FORTYTWO

DOCKER ECS PLUGIN SUPPORT

Soon after the Open source release of the Compose definition, AWS and Docker worked on a new docker plugin, the
ecs-plugin which allows to perform some similar tasks as with ECS ComposeX.

However, these fields usually will require full ARN of your resources, whereas ECS ComposeX will allow you to do
discovery of your resources and I hope give you a lot more flexibility.

With that said, the objective of ECS ComposeX is to help developers and so I added the support for the ECS Plugin
extensions fields.

See also:

Docker and ECS official documentation

42.1 x-aws-cluster

As per the official documentation, this allows you to define the ARN of an ECS Cluster you have that you want to use
to deploy the services into.

If left empty, a new cluster gets created.

With ComposeX you can use the expected ARN to indicate which cluster to deploy to. Equally, you can provide just
the name of the Cluster, ComposeX will filter it out of the ARN and behave in a similar fashion as x-cluster/Use

See also:

x-cluster

42.2 x-aws-pull_credentials

This allows you to define the secret in secrets manager that contains the username/password for authentication with a
private docker image registry.

With ComposeX you can either use it as is defined in the official documentation or combine it with the docker-compose
secrets.

Listing 1: Example of ARN use

services:
app01:
image: private.registry.mydomain.net/repository-app01
x-aws-pull_credentials: "arn:aws:secretsmanager:eu-west-1:012345678912:secret:/

→˓path/to-creds"

151

https://docs.docker.com/engine/context/ecs-integration/

ECS Compose-X Documentation, Release 0.14.4

Listing 2: Example with docker-compose secret definition

secrets:
private_repository:
x-secrets:

Name: /path/to/creds

services:
app02:
image: private.registry.mydomain.net/repository-app02
x-aws-pull_credentials: secrets::private_repository

Hint: For either methods, this will add the RepositoryCredentials property to the Task definition and add an IAM
policy to the Execution Role to secretsmanager:GetSecretValue

Hint: When using the ECS ComposeX way, you can use all the existing features of secrets (Lookup etc).

Warning: You cannot use JsonKeys for this secret.

42.3 x-aws-autoscaling

This setting allows you to define autoscaling configuration for your service. With the ECS Plugin you can define CPU
and RAM autoscaling which are assigned to the ECS Service.

If in your docker-compose files you have not defined x-scaling this will be used to define the scaling policies.

However, in case you set both x-aws-autoscaling and x-scaling, the latter will be used and the x-aws-autoscaling
settings are ignored.

This is by design as x-scaling allows for a lot more settings to be defined than x-aws-autoscaling

42.4 x-aws-policies

This allows to define additional IAM policies that are assigned to the ECS Task Role. It behaves exactly in the same
way as x-iam/ManagedPolicies does.

Listing 3: ECS Plugin syntax

services:
foo:
x-aws-policies:

- "arn:aws:iam::aws:policy/AmazonS3FullAccess"

Listing 4: ECS Compose-X syntax

services:
foo:

(continues on next page)

152 Chapter 42. Docker ECS Plugin support

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

x-iam:
ManagedPolicies:

- "arn:aws:iam::aws:policy/AmazonS3FullAccess"

42.5 x-aws-role

Allows to defined extra IAM policies. However, not that the ECS Plugin is going to automatically generate the name
of the policy assigned to the ECS Task Role.

ECS ComposeX syntax is a little lengthier to get to the IAM policies. However, allows you to define your own policy
and you can have multiple ones.

Listing 5: ECS Plugin syntax

services:
foo:
x-aws-role:

Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:

- "some_aws_service"
Resource:

- "*"

Listing 6: ECS ComposeX Syntax

services:
foo:
x-iam:

Policies:
- PolicyName: SomeName
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "some_aws_service"

Resource:
- "*"

Hint: For x-aws-role and x-aws-policies, ECS ComposeX will not override what you had defined and instead simply
merge the two definitions.

Hint: If you need to defined IAM permissions boundary, you can with ECS Compose-X. x-iam

42.5. x-aws-role 153

ECS Compose-X Documentation, Release 0.14.4

42.6 x-aws-logs_retention

Allows you to define the CloudWatch Log Group RetentionInDays period. When used in combination with ComposeX
x-logging, the highest(max) value will be used as we consider you might want the longest period for tracking purposes.

If either is set and the other is not, the value is set accordingly.

Listing 7: Example with just x-aws-logs_retention

services:
serviceA:
x-aws-logs_retention: 42

Listing 8: Both x-logging and x-aws-logs_retentions defined. Here, 64
will be set.

services:
serviceA:
x-logging:

RetentionInDays: 42
x-aws-logs_retention: 64

See also:

x-logging

Hint: If you set an arbitrary value that would not be a valid value for AWS logs retention, ComposeX will automati-
cally match to the closest valid value. For example, for 42, this will be 30. For 64, it will be 60.

42.6.1 x-aws-min_percent & x-aws-max_percent

This allows to define the percentages for ECS Deployment Configuration.

services:
serviceA:
x-aws-min_percent: 50
x-aws-max_percent: 150
deploy:

replicas: 4
update_config:

failure_action: rollback

154 Chapter 42. Docker ECS Plugin support

CHAPTER

FORTYTHREE

HISTORY

43.1 0.14.0 (2021-03-23)

Version 0.14.0 is a release coming with a new LICENSE attached, the Mozilla Public License 2.0 (MPL 2.0).

• 1e82eed LICENSE change to MPL-2.0 (John Preston)

43.1.1 New features

• 9fbe3aa New pre-defined alarms for services (#432) (John Preston)

• a6083d7 Added CompositeAlarm support (#431) (John Preston)

43.1.2 Fixes

• 534dcd0 reversed conditions logic for IAM Role for SAR template (John Preston)

• 9f145cf Publish template for AWS SAR (#438) (John Preston)

• 8008043 Removing the scaling target and scaling policies (#436) (John Preston)

• 122efae Fixed output attribute name for S3 to RDS feature (#433) (John Preston)

43.1.3 Improvements

• 1eeb6f6 Upgrade to Troposphere 2.7.0 (John Preston)

• 2afec02 Improved macro settings override and layer key (#440) (John Preston)

• 51a568f new cfn-macro Parameter BucketName (#439) (John Preston)

• ef08ae9 New image URL for XRay (John Preston)

• 670bf27 Adding default prefix for default log group name (#428) (John Preston)

155

ECS Compose-X Documentation, Release 0.14.4

43.2 0.13.0 (2021-03-10)

This new version comes with a good mix of fixes and new features supported. In an effort of always improving docker-
compose compatibility, a number of features have been added. Volumes support is added for both local volumes (non-
bind) and shared volumes (via EFS). Alarm support added to allow creating arbitrary alarms and scaling policies on
metrics for non Compose-X managed resources.

43.2.1 New Features

• 33f7b45 x-alarms support (#425)

• e12d25a ECS DeploymentConfiguration support with Circuit breaker (#423)

• dad6d02 awslogs drivers options support (#422)

• b66876b Added lookup for SecurityGroups in Ingress (#401)

• c3c1565 x-efs (#395)

• df7d085 Added tmpfs support

• d19e60d Added sysctls support

• 8c4c30e Added working_dir support

• 71cb736 Added shm_size support

• a09d233 Added cap_add,cap_drop support

• 69bc348 Added support for Ulimits

• 3f380c7 docker-compose ECS local volumes support (#391)

43.2.2 Fixes

• 811f88d Fixing URLs

• cae1336 build can be either a string or dict

• f093931 Fixed self-ingress process (#417)

• ec3dbc4 Fixing VpcId.Use and x-dns when not set (#415)

• f0d6635 Fixing lookup resource output condition (#411)

• 6dbef07 Fixing s3 to ecs bug for lookup (#400)

• 7edc838 Renamed and fixed condition for registries (#392)

• 8876047 For PrivateNamespace in CloudMap, using ns-ID (#388)

• b7130ea Family name is as defined in compose files, and LB use that name instead of logical name (#386)

156 Chapter 43. History

ECS Compose-X Documentation, Release 0.14.4

43.2.3 Improvements

• 765426b Updated docs

• 07c6db2 Using troposphere 2.6.4

• 7a31e63 Simpler regexp to group required, ping and optional healthcheck (#416)

• 4977767 x-elbv2 settings in macro parameters for LB Attributes (#410)

• 0ea035a Code Cleanup and Refactor (#409)

• 8059454 Moved x-s3 settings to MacroParameters and cleaned up old unused code (#407)

• 8773299 Healthcheck times translated from str to int (#406)

• 5a49890 When not public NLB, allows to override the LB Subnets to use (#402)

• 695624f Added compatibility matrix (#398)

• ec184fc Generic attributes output configuration (#396)

• 5f1cc0b Adding a message to inform that no port were defined but UseCloudmap (#387)

43.3 0.12.0 (2021-01-31)

43.3.1 New features

• dd9246c Allowing to define features by names and related resources (#376) John Preston

• 2d0ef6d Allow to define RoleArn for DNS Lookup (#377) John Preston

• d85fd90 Add an IAM Role to RDS for S3import feature (#373) John Preston

43.3.2 Fixes

• b690d60 Fixing ingress parsing for Ingress (#382) John Preston

• 01c0582 Fix import value for subnets to Join for custom subnets (#381) John Preston

• 8f2b777 Passing the subnets as a string with !Join from mappings (#380) John Preston

• d72e9c1 Fixed events. Dumbed down the Fargate version John Preston

• 913d451 Fixing AppMesh

• 397c4cf Fixed ACM certificate mapping (#366) John Preston

• f09ad64 Fix S3 name generation, events subnet param (#357) (jacku7) Jack Saunders

43.3. 0.12.0 (2021-01-31) 157

ECS Compose-X Documentation, Release 0.14.4

43.3.3 Improvements

• 95f76ab Updated lookup based to be more accurate (#378) John Preston

• 62b27f7 Documentation updates/fixes and macro install/usage guide (#372) John Preston

• 1e77c87 Working lookup of DNS zones. Relies on DNS Name only. John Preston

• 5a8b659 VPC and subnets now in mappings John Preston

• 913d451 Zones require name John Preston

• 54593eb ECS Cluster “pointer” as a variable of settings John Preston

• d801463 * Files pulled for remote files are stored with tempfile * Fixing x-dns John Preston

• 0267cbc Refactor of DNS into more gracious handling John Preston

• e56b667 * Refactored ECS Cluster creation for simplicity John Preston

• ba511dd Create a nightly manifest list pointing always to the latest (#364) John Preston

• 3596286 Docker image release-work (#363) John Preston

• 02591ce Support for OIDC and Cognito AUTH action in x-elbv2 (#339) John Preston

• fb36420 Updating build conditions and methods (#362) John Preston

• 06d5776 Adding sitemap and meta keywords (#360) John Preston

• 29e75ef Re-arranging test files and patching up CI files (#361) John Preston

43.3.4 Special changes

The following changes all relate to the release a CFN Macro of ECS Compose-X

• 1aea413 Allow to set override Function IAM Role John Preston

• b804360 Maintain policy on previous layer versions (#383) John Preston

• 5fe8169 Adding retain policy on layer version permissions (#374) John Preston

• ae3d42a AWS Lambda Layer build and release (#371) John Preston

• 2b1c21b Adding macro image build phase and deploy template (#370) John Preston

43.4 0.11.0 (2021-01-14)

First release of 2021 focusing on some new features / extension of existing features, as well on improving stability.

43.4.1 New features

885e89e - DB Secrets exposable to services (#356) (John Preston) b723cc7 - Allow to override subnets to use for
resources deployed inside VPC (#353) (John Preston) 0c6c86c - Create PrefixList for VPC and suibnets when cre-
ating a new VPC (#352) (John Preston) 4405fef - Support for ElasticCache Cluster via x-elasticache (#350) (John
Preston) 59ceae0 - Added support for CodeGuru Profiling Group (#323) (John Preston) 97529fa - x-docdb support
for DBClusterParameterGroup (#349) (John Preston) a8888b6 - Extending ecs-plugin x-fields support (#336) (John
Preston)

158 Chapter 43. History

ECS Compose-X Documentation, Release 0.14.4

43.4.2 Improvements

faed0d3 - Align to CamelCase for x-scaling and x-network settings (#347) (John Preston) 249ba18 - Moved defauls
into properties dicts. Added more docstrings for clarity (#345) (John Preston) 97345c7 - Pyup/updates (#329) (John
Preston) 774640b - Create pyup.io config file (#327) (pyup.io bot)

43.4.3 Fixes

8d14ac0 - Fix for use_cloudmap (#346) (John Preston) aa1ba40 - Fixed properties update (#344) (John Preston)
d2cd544 - Fixing VPC related settings (#341) (John Preston)

43.5 0.10.0 (2020-12-13)

43.5.1 New features

• 976e5bb Support for env_file (#318)

• a432763 Import simple SAM IAM policies templates. (#316)

• db2c8fe Support for service-to-service explicit ingress (#300)

• fe1e0af Added to support DB Snapshot for new DB creation (#297)

• 73cdf9a x-vpc - Support for VPC FlowLogs (#296)

• b9f1ec8 Scaling rules for Lookup queues (#293)

• 54faa50 Feature x-dns::Records to add Public DNS Records pointing to elbv2 (#289)

• d5a97a1 Adding support for kinesis streams (#287)

43.5.2 Improvements

• 1be3b99 Improved secrets JsonKeys based on suggestions (#322)

• 6302bc6 x-rds:: Refactor Properties/MacroParameters/Settings (#309)

43.5.3 Fixes

• 191d420 No interpolate ${AWS::PseudoParameters} (#324)

• de87457 Bug fixes for RDS/DocDB and ECS containers (#305)

• 4220d7d TMP solution pending AWS official XRay publish (#304)

• 2c1fcfc Fix/duplicate secrets keys (#303)

• 4befc25 Fixed backward logic (#301)

43.5. 0.10.0 (2020-12-13) 159

ECS Compose-X Documentation, Release 0.14.4

43.5.4 Other updates and corrections

• 31d7bcc Added kinesis docs (#313)

• 997f0d9 Added back exports but not using in ComposeX. For cross-stacks usage (#310)

• cb0be55 Linted up code (#307)

• 5e559f0 Prefixing the log group with the root stack name for uniqueness (#295)

• c81f443 Refactored to single function recursively evaluating properties (#291)

• 16a5d39 Code linting (#285)

43.6 0.9.0 (2020-11-26)

43.6.1 New features

• cabd793 - Support for networks: and mapping to additional subnets. (#282)

• ba4ed5c - ECS Scheduled tasks support (#280)

• 82e2086 - Defaulting to encrypted for RDS (#276)

• a516a09 - Added support for service level x-aws keys from ecs-plugin (#273)

• 5e1ab08 - Improved logging settings (#265)

• 96ad398 - x-secrets::Lookup (#256)

• dfb249c - Lookup for ACM working (#254)

• ea6e05c - Feature x-docdb (#252)

• 0a4d258 - Refactor services to root stack (#248)

• 49a9d31 - ARN of TGT Group always passed to service stack (#245)

• eafcd38 - Updated documentation (#236)

• aa4c96b - Feature x-elbv2 with x-acm support and validation via x-dns (#228)

• fb0bc4a - Allowing RoleArn in x-rds Lookup (#233)

• 22feb56 - Lookup via resources tag api for VPC resources (#231)

• be536c1 - Cross-Cccount assume role generally and locally for lookup (#229)

• 32075f2 - Allow for custom cooldown for steps (#221)

• ca89836 - Upgrading troposphere==2.6.3 (#216)

• 3a1b0c8 - Linting DynDB features and use-case files (#213)

• 67cc67e - Feature x-s3 (#196)

• 230a9d3 - Lookup RDS DB/Clusters and secrets (#211)

160 Chapter 43. History

ECS Compose-X Documentation, Release 0.14.4

43.6.2 Fixes

• fc55f4b - Patched version of 0.8.9 with previews for 0.9.0 (#275)

• 1dc4113 - Replaced LOG.warn with LOG.warning (#271)

• 42c7027 - Docs improvements (#278)

• 78bef91 - Clarified Ingress syntax (#261)

• af31f33 - Fixed a number of small issues (#259)

• 02da4e1 - Hotfix services attributes (#243)

• fb7265a - During PyCharm refactor, error change occured (#238)

• c46c208 - Fixing import export string (#224)

• 7669799 - Removing missed print (#217)

• 4171044 - Fixing condition when QueueName property is set (#210)

• 0ced643 - Patched SQS based scaling rule and alarm (#202)

43.6.3 Syntax changes from previous version

• 86d2141 - Refactor/services xconfig keys (#269)

• 1cfa6b7 - Refactor AppMesh properties keys (#262)

• d753473 - Refactor to classes for XResources and Compose resources (#219)

Documentation theme changed to Read The Docs and tuned some colors.

43.7 0.8.0 (2020-10-09)

43.7.1 New features:

• Support for ECS Scaling based on SQS Messages in queue

• Support for ECS Scaling based on Service CPU/RAM values (TargetTracking)

• Support for using existing Secrets in AWS Secrets Manager

• Support for Service logs expiry from compose definition

• Enable to use AWS CFN native PseudoParameters in string values

• Improved Environment variables interpolation to follow the docker-compose behaviour

43.7. 0.8.0 (2020-10-09) 161

https://github.com/compose-x/ecs_composex/pull/194
https://github.com/compose-x/ecs_composex/issues/188
https://github.com/compose-x/ecs_composex/pull/193
https://github.com/compose-x/ecs_composex/issues/165
https://github.com/compose-x/ecs_composex/issues/182
https://github.com/compose-x/ecs_composex/issues/185

ECS Compose-X Documentation, Release 0.14.4

43.7.2 Closed reported issues:

• https://github.com/compose-x/ecs_composex/issues/175

Some code refactor and bug fixes have gone in as well to improve stability and addition of new services.

43.8 0.7.0 (2020-08-12)

New features:

• Support for AWS Secrets mapping to secrets in docker-compose

• Support for Use on VPC which needs no lookup

• Support for IAM policies to manually add ad-hoc permissions outside of the pre-defined ones

• Additional configuration file to use with CodePipeline

Various bug fixes and some small features to help making plug-and-play easier. Introduction to Use which should
allow for resources reference outside of your account without cross-account lookup.

43.9 0.6.0 (2020-08-03)

New features: * Docker-compose multi-files (override support)

The new CLI uses positional arguments matching a specific command which drives what’s executed onwards. Trying
to re-implement features as close to the docker-compose CLI as possible.

• config allows to get the YAML file render of the docker-compose files put together.

• render will put all input files together and generate the CFN templates accordingly.

• up will deploy do the same as render, and deploy to AWS CFN.

43.10 0.5.3 (2020-07-30)

A lot of minor bug fixes and removing CLI commands to the benefit of better implementation via the compose file.

43.11 0.5.2 (2020-07-30)

New features:

• Support for AWS KMS

The support for KMS will be extended to use the CMK for RDS/SQS/SNS and any resource that can use KMS for
encryption at rest.

Hint: Mind, this might occur a few extra costs.

162 Chapter 43. History

https://github.com/compose-x/ecs_composex/issues/175
https://github.com/compose-x/ecs_composex/pull/142
https://github.com/compose-x/ecs_composex/issues/121
https://github.com/compose-x/ecs_composex/issues/77

ECS Compose-X Documentation, Release 0.14.4

43.12 0.5.1 (2020-07-28)

Small bug patches and code refactoring. SQS now into a single stack unless there are more than 30 queues.

43.13 0.5.0 (2020-07-27)

43.13.1 New features

• DynOAamoDB support

• Lookup for existing tables which the services get IAM access to.

43.14 0.4.0 (2020-07-20)

• ACM Support for ALB/NLB for public services.

• AWS AppMesh support

• Attempt to making navigation through docs better.

• Automatic release to https://nightly.docs.ecs-composex.lambda-my-aws.io/ from master

To help with code quality and support, I subscribed to the following services:

• CodeScanning using SonarCloud.io

• CodeCoverage reports with Codecov

43.15 0.3.0 (2020-06-21)

Refactored the way the services, task definitions and containers are put together, in order to support multiple new
features:

• Allow multiple services to be merged into one Task definition

• Support Docker compose v3 compute definition

The support for Docker compose compute settings allows to add up all the CPU / RAM of your service(s) and iden-
tify the closest Fargate CPU/RAM configuration for the Task Definition (the respective CPU/RAM of each task is
unchanged).

The docker-compose file is now more strictly close to the definition set in Docker Compose, with regards to attributes
and their expected types.

Note: In order to respect more closely the docker-compose definition, the key previously used configs now is x-
configs

43.12. 0.5.1 (2020-07-28) 163

https://github.com/compose-x/ecs_composex/issues/31
https://github.com/compose-x/ecs_composex/issues/93
https://github.com/compose-x/ecs_composex/issues/57
https://nightly.docs.ecs-composex.lambda-my-aws.io/
https://sonarcloud.io/dashboard?id=lambda-my-aws_ecs_composex
https://codecov.io/gh/lambda-my-aws/ecs_composex
https://github.com/compose-x/ecs_composex/issues/78
https://github.com/compose-x/ecs_composex/issues/32

ECS Compose-X Documentation, Release 0.14.4

43.16 0.2.3 (2020-04-16)

Refactored the ecs part into a class and reworked the configuration settings to allow for easier integration. Documen-
tation has been updated to reflect the changes in the structure of the configs section.

43.16.1 New features

• Enable AWS X-Ray (#56) Enabling X-Ray will allow developer to get APM metrics and visualize the appli-
cation interaction with other services.

• No-upload (#64) This allows to store the templates locally only.

Note: The templates are still validated from their body

• IAM Boundary for the IAM roles (#55) Permissions boundary are an IAM feature that allows to set bound-
aries which superseed other permissions associated to the entity. It is often the put as a condition for users
creating roles to assign a specific Permission Boundary policy to the roles created.

43.17 0.2.2 (2020-04-10)

Refactor of the ECS service template into a single class (still got to be reworked). Refactored the ECS Services into a
master class which ingests the CLI kwargs directly.

Reworked and reorganized documentation to help with readability

43.18 0.2.1 (2020-05-03)

Code refactored to allow a better way to go over each template and stack so everything is treated in memory before
being put into a file and uploaded into S3.

• Issues closed

– Docs update and first go at IAM perms (#22)

– Refactor of XModules logic onto ECS services (#39)

– Templates & Stacks refactor (#38)

– Update issue templates for easy PRs and Bug reports

– Added make conform to run black against the code to standardize syntax (#26)

– Allow to specify directory to write all the templates to in addition to S3. (#27)

– Reformatted with black (#25)

– Expand TagsSpecifications with x-tags (#24)

– Bug fix for root template and Cluster reference (#20)

Documentation structure and content updated to help navigate through modules in an easier way. Documented syntax
reference for each module

164 Chapter 43. History

https://github.com/compose-x/ecs_composex/issues/56
https://github.com/compose-x/ecs_composex/issues/64
https://github.com/compose-x/ecs_composex/issues/55
https://github.com/compose-x/ecs_composex/issues/22
https://github.com/compose-x/ecs_composex/issues/39
https://github.com/compose-x/ecs_composex/issues/38
https://github.com/compose-x/ecs_composex/issues/26
https://github.com/compose-x/ecs_composex/issues/27
https://github.com/compose-x/ecs_composex/issues/25
https://github.com/compose-x/ecs_composex/issues/24
https://github.com/compose-x/ecs_composex/issues/20

ECS Compose-X Documentation, Release 0.14.4

43.18.1 New features

• #6 - Implement x-rds. Allows to create RDS databases with very little properties needed

– Creates Aurora cluster and DB Instance

– Creates the DB Parameter Group by importing default settings.

– Creates a common subnet group for all DBs to run into (goes to Storage subnets when using –create-
vpc).

– Creates DB username and password in AWS SecretsManager

– Applies IAM permissions to ECS Execution Role to get access to the secret

– Applies ECS Container Secrets to the containers to provide them with the secret values through Envi-
ronment variables.

43.19 0.1.3 (2020-04-13)

A patch release with a lot of little features added driven by the writing up of the blog to make it easier to have in a
CICD pipeline.

See overall progress on GH Project

43.19.1 Issues closed

• Issue 14

• Issue 15

43.20 0.1.2 (2020-04-04)

Patch release aiming to improve the CLI and integration of the Compute layer so that the compute resources creation
in EC2 are standalone and can be created separately if one so wished to reuse.

43.20.1 Issues closed

Issue related to the fix.

PR related to the fix.

43.21 0.1.1 (2020-04-02)

Added tags definition from Docker ComposeX with the x-tags which allows to add tags to all resources that support
tagging from AWS CFN

x-tags:
- name: TagA
value: SomeValue

- name: CostcCentre

(continues on next page)

43.19. 0.1.3 (2020-04-13) 165

https://github.com/compose-x/ecs_composex/issues/6
https://github.com/orgs/lambda-my-aws/projects/3
https://github.com/compose-x/ecs_composex/issues/14
https://github.com/compose-x/ecs_composex/issues/15
https://github.com/compose-x/ecs_composex/issues/7
https://github.com/compose-x/ecs_composex/pull/8

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

value: IamNotPayingForThis
- name: Some:Special:Key
value: A long weird value

or alternatively in an object/dict format

x-tags:
TagA: ValueA
TagB: ValueB

43.22 0.1.0 (2020-03-24)

• First release on PyPI.

– Working VPC + Cluster + Services

– Working expansion of existing Cluster with new VPC

– Working expansion of existing VPC and Cluster with new services

– IAM working to allow services access to SQS queues

– SQS Queues functional with DLQ

– Works on Python 3.6, 3.7, 3.8

– Working start of build integration in CodeBuild for automated testing

166 Chapter 43. History

CHAPTER

FORTYFOUR

EXTRAS

44.1 Plug & Play to existing resources with auto discovery

Since the start of this project, the ability to plug & play to an existing infrastructure has been a priority to this project.

At the very beginning of it, it was mostly based out of finding one specific ID for a specific resource and it was rather
complex and somewhat prone to errors, as software always is.

It has evolved since and improved significantly to allow a more flexible approach, relying nearly only on your resources
and their tags.

Resource tags are a fantastic way to identify and distinguish resources from one another. More often than not, the
resource ID of a resource, will be better left generated by AWS so you can later update it further without requiring
replacement. But then one often finds a friendly tag, Name which allows us to know at a glance what the resource is
about.

Now, looking for resources in your own account is easy but sometimes, you might need to be able to cross borders and
identify shared resources into another AWS account.

You will find in the Lookup feature an option to specify a specific IAM role to use in order to perform the API calls.
This IAM role corresponds to the IAM role in your “other” account which will give you permissions to look around
for your resources.

Finally, alternatively, if you do not have cross-account in place or have some resources untagged, you can simply use
the Use feature and provide directly the ID or ARN (depends based on the resource type) that you wish to use.

For further information, refer to Lookup

44.2 Docker ECS-Plugin x-aws-keys support

In order to keep make the integration and inter-operability of tools used by developers, we are going to add support
for, mostly, services level x-aws keys such as -xaws-iam-role or x-aws-autoscaling.

This will allow developers who might have started a journey to ECS using the docker ecs plugin to continue that
journey with ECS Compose-X without making too many changes.

In case for a similar setting, such as x-aws-iam-policies which in ECS Compose-X is under x-iam/Policies, these non
conflicting settings will add up together. However, in case of conflicting information, the ECS Compose-X definition
will prevail over the x-aws-keys.

167

ECS Compose-X Documentation, Release 0.14.4

44.3 AWS AppMesh integration

AWS AppMesh is a service mesh which allows you to define how services talk to each other at an application L7)
level, and optionally, TCP (layer 4) level. It is extremely powerful

Since the beginning of the project, we have been using AWS Cloud Map to create a private DNS Hosted Zone linked
to the VPC created at the same time. This allowed us to very simply register into the PHZ (private hosted zone) via
Service Discovery.

We are going to use these entries to make a 1-1 mapping between our services defined in the services section of the
docker-compose file and the nodes listed in the x-appmesh section.

AppMesh uses envoy as a side-car proxy that will capture our services packets and route these to their defined back-
ends. Using AWS AppMesh empowers developers to declare how services are supposed to communicate together,
what to do in case of errors, and administrators can define whether or not the traffic between all the components
should be done using TLS termination end-to-end, to ensure no man-in-the-middle attacks could happen.

The syntax for AppMesh in ECS Compose-X is a mix of Istio, Envoy and AWS AppMesh definitions.

See also:

x-appmesh

44.4 Services autoscaling integration

You can now define scaling for your ECS Services using * CPU / RAM Target Tracking scaling * SQS Messages
(visible) depth with step scaling.

For example, we want to scale our front-end based on CPU usage and our backend, dealing with queues, based on
messages numbers.

services:
frontend:
ports:

- 80:80
image: my-nginx
deploy:

replicas: 2 # by default I want 2 containers
x-scaling:

Range: "1-10" # 1 to 10 containers to deploy for the service
TargetScaling:
CpuTarget: 80 # Means 80% average for all containers in the service.

backend:
image: my-worker
deploy:

replicas: 1 # Initially I want 1 container running to make sure everything is
→˓working

x-configs:
scaling:

Range: "0-10" # I can have between 0 to 10 containers. 0 because I am happy
→˓not paying when nothing to do

x-sqs:
jobs-queue:
Properties: {}
Settings: {}
Services:

(continues on next page)

168 Chapter 44. Extras

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

- name: frontend
access: RWMessages

- name: backend
access: RWMessages
scaling:
steps:
- lower_bound: 0
upper_bound: 10
count: 1

- lower_bound: 10
upper_bound: 20
count: 2

- lower_bound: 20
count: 21

As you can see we defined scaling for SQS only on the backend, as we don’t need to scale the frontend based on that.
Also we set the count for final step to 21, which is higher than the Range indicated.

Our frontend will be managed by ECS itself which will be ensuring that the average CPU usage across the service
remains under 80%.

Hint: In composex, you must define a generic Range first, and if you override it in the scaling, it will take the highest
count of all scaling policies.

Note: Scaling with target tracking based on ELBv2 metrics is coming too.

44.5 Fargate CPU/RAM auto configuration

When you want to create services on ECS, you first need to create a Task Definition. Among the IAM permissions
and the network configuration, the Task definition also defines how much CPU and RAM you want to have available
for all your containers in the task.

If you have only one service, you might as well just not put any limits at the Container Definition level, and let it use
all the available CPU and RAM defined in the Task Definition.

Hint: The Task definition CPU and RAM is the maximum CPU and RAM that your containers will be able to use.
The amount of CPU and RAM in AWS Fargate is what determines how much you are paying.

But when you start to add side-cars, such as Envoy, X-Ray, or your WAF, your reverse-proxy, you want to start setting
how much CPU and RAM these containers can use out of the Task Definition.

In docker-compose (or with swarm), you already have the ability to define the CPU limits and reservations you want
to give to each individual service in the compose file.

To help having to know the different CPU/RAM settings supported by AWS Fargate, ECS Compose-X, if defined, will
automatically use the limits and reservations configuration set in your Docker compose file, and determine what is the
closest CPU/RAM configuration that will allow your services to run into.

Hint: Setting at least the reservation values so your containers are guaranteed some capacity in case other containers

44.5. Fargate CPU/RAM auto configuration 169

ECS Compose-X Documentation, Release 0.14.4

get to use more resources than expected.

See also:

deploy reference.

We have the following example:

Blog applications base file for testing

version: '3.8'
services:

rproxy:
image: ${IMAGE:-nginx}
ports:

- 80:80
deploy:

replicas: 2
resources:
reservations:
cpus: "0.1"
memory: "32M"

limits:
cpus: "0.25"
memory: "64M"

depends_on:
- app01

app01:
image: ${IMAGE:-nginx}
ports:

- 5001
deploy:

resources:
reservations:
cpus: "0.25"
memory: "64M"

environment:
LOGLEVEL: DEBUG
SHELLY: ${SHELL}
TERMY: "$TERM"

links:
- app03:dateteller

app02:
image: ${IMAGE:-nginx}
ports:

- 5000
deploy:

resources:
reservations:
cpus: "0.25"
memory: "64M"

environment:
LOGLEVEL: DEBUG

app03:
(continues on next page)

170 Chapter 44. Extras

https://docs.docker.com/compose/compose-file/#deploy

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

image: ${IMAGE:-nginx}
ports:

- 5000
deploy:

resources:
reservations:
cpus: "0.25"
memory: "64M"

environment:
LOGLEVEL: DEBUG

volumes:
- shared-images:/shared/images

secrets:
- abcd
- zyx

volumes:
shared-images: {}

secrets:
zyx:
external: True

We have CPU and RAM limits set for both limits and reservations. So we know that we can use the limits, add them
up, and this will indicate us our CPU configuration.

Hint: In docker compose, you indicate the CPU as a portion of vCPU. A value of 1.0 means 1024 cycles, or 1vCPU.
A value of 0.25 equals to 256 cycles, which equivals to .25 of a vCPU.

We get: * 0.75 vCPU (limits) * 192MB of RAM.

The closest configuration for Fargate that will cater for the amount of vCPU, is 1024. With 512 only, we could run
low in cpu cycles.

So then, from there, we know that Fargate will allow for a minimum of 2GB of RAM. So our CPU/RAM configuration
will be 1024 CPU cycles and 2048MB of RAM.

Now, let’s say we know that our rproxy (NGINX based) will only need .1 CPU at most and 128M of RAM, and we
want to make sure that the application container, does not take all the CPU and RAM away from it, but also that it
should not go over these limits.

So we are going to set these limits for the rproxy container.

Hint: If you do not set the reservations, the container could potentially free compute resources to the benefit of others,
but at the risk of having none available.

Now, let’s say we know our application will use a minimum of 256M, and up to .25 of a CPU.

Let’s count: * .1 vCPU (limit+reservation) and .25 (reservation). We get 0.35vCPU. * 128MB RAM
(limit+reservation) and 256M (reservation), We get 284MB.

The closest configuration for Fargate is .5vCPU and 1024MG of RAM. But, also, our application container can use up
to 1024-128 = 896MB of RAM, as we did not set a limit. For some applications where you are not totally sure of the
RAM you might need, this is a good way to keep for free space, just in case.

44.5. Fargate CPU/RAM auto configuration 171

ECS Compose-X Documentation, Release 0.14.4

Note: Chances are, if you are using so low CPU/RAM for your microservice, you might be running it in AWS
Lambda!

Hint: You might think that for the CPU you need, ie. 1vCPU, which means you need at least 2GB of RAM for the
appropriate Fargate profile, is a lot of RAM wasted.

However, in this configuration, the CPU represents ~80% of the costs (29.5$+6.5$=36$).

44.6 Multiple services, one microservice

Hint: Refer to labels for more details.

Regularly developers will build locally multiple services which are aimed to work together as a group. And sometimes,
these services have such low latency requirements and dependency on each other, that they are best executed together.

In our example before, where we use NGINX to implement webserver logic, configuration and security, and leverage
the power of a purpose-built software, as opposed to re-implement all that logic directly in your application, we might
to run these two together.

On your workstation, when you run docker-compose up, it obviously is going to run it all locally. However, by default,
these are defined as individual services.

To allow multiple services to be merged into a single Task Definition, and still treat your docker images separately,
you can use a specific label that ECS Compose-X will recognize to group services into what we called a family.

ECS already has a notion of family, so I thought, we should use that naming to group services logically.

The deploy labels are ignored on a container level, therefore, none of these tags will show when you deploy the
services.

Hint: The labels can be either a list of strings, or a “document” (dictionary).

But then you might wonder, how come are the permissions going to work for the services?

Remember, the permissions are set at the Task definition level. So any container within that service, will get the same
permissions.

However, for the database as an example, which creates a Secret in AWS Secrets Manager, which we would then
expose to the service with the Secrets attribute of the Container Definition, ECS Compose-X will specifically add
that secret to that container only. Equally, for the services linked to SQS queues or SNS topics (etc.), the environment
variable providing with the ARN of the resource, will also only expose the value to the container set specifically.

In case you wanted to allow an entire family of services to get access to the resources, you can also give, as the service
name in the definition, the name of one of your families defined via the labels.

For example,

services:
worker01:
image: worker01
deploy:

(continues on next page)

172 Chapter 44. Extras

ECS Compose-X Documentation, Release 0.14.4

(continued from previous page)

labels:
ecs.task.family: app01

worker02:
image: worker02
deploy:

labels:
ecs.task.family: app01

x-sqs:
Queue01:
Properties: {}
Services:

- name: app01
access: RWMessages

44.6. Multiple services, one microservice 173

ECS Compose-X Documentation, Release 0.14.4

174 Chapter 44. Extras

CHAPTER

FORTYFIVE

PHILOSOPHY

CloudFormation is awesome, the documentation is excellent and the format easy. So ECS Compose-X wants to keep
the format of resources Properties as close to the orignal as possible as well as making it easier as well, just alike
resources like AWS::Serverless::Function which will create all the resources around your Lambda Function as well
as the function.

45.1 Trying to implement DevOps starting with developers

Whilst this is something that can be used by AWS Cloud Engineers tomorrow to deploy applications on ECS on the
behalf of their developers, the purpose of ECS Compose-X is to enable developers with a simplistic and familiar syntax
that takes away the need to be an AWS Expert. If tomorrow developers using Compose-X feel comfortable to deploy
services by themselves, I would be able to stop hand-holding them all the time and focus on other areas.

45.2 Community focused

Any new Feature Request submitted by someone other than myself will get their request prioritized to try address their
use-cases as quickly as possible.

Submit your Feature Request here

45.3 Ensure things work

It takes an insane amount of time to test everything as, generating CFN templates is easy, testing that everything works
end-to-end is a completely different thing.

I will always do my best to ensure that any new feature is tested end-to-end, but shall anything slip through the cracks,
please feel free to report your errors here

175

https://github.com/lambda-my-aws/ecs_composex/issues/new/choose
https://github.com/lambda-my-aws/ecs_composex/issues/new/choose

ECS Compose-X Documentation, Release 0.14.4

45.4 Provision other AWS resources your services need

So you have the definitions of your services and they are running on ECS. But what about these other services that
you need for your application to work? DBs, notifications, streams etc. Are you going to run your MySQL server onto
ECS too or are you going to want to use AWS RDS? How are you going to define the IAM roles and policies for each
service? Access Secrets? Configuration settings?

That is the second focus of ECS Compose-X: defining extra sections in the YAML document of your docker compose
file, you can define, for your databases, queues, secrets etc.

ECS Compose-X will parse every single one of these components. These components can exist on their own but what
is of interest is to allow the services to access these.

That is where ECS Compose-X will automatically take care of all of that for you.

For services like SQS or SNS, it will create the IAM policies and assign the permissions to your ECS Task Role so
the service gets access to these via IAM and STS. Credentials will be available through the metadata endpoint, which
your SDK will pick immediately.

For services such as RDS or ElasticCache, it will create the security groups ingress rules as needed, and when appli-
cable, will handle to generate secrets and expose these via ECS Secrets to your services.

45.5 How does it work?

To do so, ECS Compose-X will use the library called Troposphere and generate all the CloudFormation templates
for it. These extra resources that you need (RDS, SQS etc.), need to be defined. To keep things simple, you can
defined them in the same way you would do in AWS CloudFormation templates, add these resources to your compose
definition.

Hint: x- is ignored by docker-compose when you run it. See Extensions fields

Note: x- and y- are natively defined in the YAML Specifications

176 Chapter 45. Philosophy

https://github.com/cloudtools/troposphere
https://docs.docker.com/compose/compose-file/#extension-fields
https://yaml.org/spec/

CHAPTER

FORTYSIX

WHAT DOES ECS COMPOSE-X DO DIFFERENTLY? LONG VERSION

Where ECS Compose-X distinguishes itself from other tools is embedding security for each service individually,
so that developers only have to connect resources logically together in the same way they would use links between
microservices in their Docker Compose definition.

Each microservice needs to explicitly be declared as a consumer of a resource to get access to it, otherwise it won’t be
able to access the resource or other microservices.

This is achieved simply by using AWS IAM policies or security groups ingress, where applicable.

That simplified way to define access between services and resources helps with defining a shared-responsibility model
between application engineers and cloud engineers:

Application engineers must know what their application does and how services interface to each other and to external
services. This gives a sense of ownership to the developers of the infrastructure for the services, via the definitions
in the Docker Compose file that defines the application stack resources and services along with resources access and
permissions.

177

ECS Compose-X Documentation, Release 0.14.4

178 Chapter 46. What does ECS Compose-X do differently? Long version

CHAPTER

FORTYSEVEN

WHY DID I CREATE ECS COMPOSE-X?

Many companies I have worked with struggle with providing a true cloudy experience to their developers and enable
them to deploy AWS resources in a controlled fashion. And when they do give poweruser/administrator level of
permissions to developers, they usually have not been trained appropriately to understand fundamentals, such as least
privileges and you end up with services which all use the same AWS Access and Secret keys (yes, I witnessed it
recently) and these keys stay around for eternity (seen 1000+ days).

As an AWS Cloud Engineer, this scares the hell out of me and I feel like this is the first thing I need to fix. As an
automation engineer, I wanted a tool that allows developers to keep using Docker compose, as they very often do, so
they can’t run their workload on their laptops for quick testing and application testing.

But, “It works on my laptop” is something that in 2020 is simply unacceptable to companies deploying microservices.

Therefore, combining my love for least privileges and therefore IAM instance capability to implement it, and the need
for a tool going these extra miles, I decided to simply go for it.

A lot of you probably would prefer to use some other tools, such as Terraform. But I all heartily believe that cloud
engineers should use the IaC provided by the Cloud provider.

Third party integrations are coming, including for example the excellent AWS CFN registries where we already see
partners like DataDog provide the ability to create non AWS resources as part of the CFN stack and remove the need
for custom made code.

179

ECS Compose-X Documentation, Release 0.14.4

180 Chapter 47. Why did I create ECS Compose-X?

CHAPTER

FORTYEIGHT

WHY AM I NOT USING AWS CDK?

ECS Compose-X was started before AWS CDK came out with any python support, and python was the language of
choice for this project.

Therefore, Troposphere was the obvious choice as the python library to use to build all the CFN templates. The
way Troposphere has been built is simple and clear, the name of the properties are the same as they are in AWS
CloudFormation, which gives a sense of standard to the user, allowing an experience as close to copy-paste as possible.

Troposphere has a very strong community and has wide set of AWS services support. The community is active and
other AWS Projects members are directly involved in the day-to-day life of the project.

In CDK, all the properties you have to set for a CFN resource have been renamed, Troposphere kept the same name
definition for the resources properties. To me, this is a very valuable thing, not to have to map CFN properties to a
language specific one.

181

https://github.com/cloudtools/troposphere

ECS Compose-X Documentation, Release 0.14.4

182 Chapter 48. Why am I not using AWS CDK?

CHAPTER

FORTYNINE

IMPLEMENTING LEAST PRIVILEGES AT THE HEART OF ECS
COMPOSE-X

One of the most important value add for a team of Cloud/DevOps engineers who have to look after an environment to
use ECS Compose-X is the persistent implementation of best practices:

• All microservices are using different sets of credentials

• All microservices are isolated by default and allowed traffic only when explicitly permitted

• All microservices must be defined as the consumer of a resource (DB, Queue, Table) to be granted access to it.

There have been to many instances of breaches on AWS due to a lack of strict IAM definitions and permissions.
Automation can solve that problem and with ECS Compose-X the effort is to constantly abide by the least privileges
access principle.

183

ECS Compose-X Documentation, Release 0.14.4

184 Chapter 49. Implementing least privileges at the heart of ECS Compose-X

CHAPTER

FIFTY

CONTRIBUTORS

• John Preston

– Github

– Keybase

185

https://github.com/johnpreston
https://keybase.io/johnpreston78

ECS Compose-X Documentation, Release 0.14.4

186 Chapter 50. Contributors

CHAPTER

FIFTYONE

CREDITS

This package would not have been possible without the amazing job done by the AWS CloudFormation team! Thank
you to all people working on their awesome libaries, to name a few:

• Troposphere

• placebo

• behave

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

187

https://github.com/cloudtools/troposphere
https://pypi.org/project/placebo/
https://pypi.org/project/behave/
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

ECS Compose-X Documentation, Release 0.14.4

188 Chapter 51. Credits

CHAPTER

FIFTYTWO

INDICES AND TABLES

• genindex

• modindex

• search

189

	ECS Compose-X
	Requirements
	Installation
	ECS Compose-X as an AWS CloudFormation Macro
	Contributing
	AWS ECS (and AWS Fargate) Features
	Docker Compose
	Docker AWS ECS Plugin
	AWS IAM Policies from AWS SAM
	services
	volumes
	secrets
	networks
	logging
	deploy
	x-scaling
	x-iam
	x-network
	x-logging
	x-xray
	x-codeguru-profiler
	Common syntax for x-resources
	x-dynamodb
	x-rds
	x-docdb
	x-elastic_cache
	x-s3
	x-efs
	x-appmesh
	x-dns
	x-elbv2
	x-acm
	x-kinesis
	x-sqs
	x-sns
	x-events
	x-kms
	x-vpc
	x-cluster
	x-alarms
	spot_config
	Docker ECS Plugin support
	History
	Extras
	Philosophy
	What does ECS Compose-X do differently? Long version
	Why did I create ECS Compose-X?
	Why am I not using AWS CDK?
	Implementing least privileges at the heart of ECS Compose-X
	Contributors
	Credits
	Indices and tables

