

Welcome to ECS-Compose-X’s documentation!

ECS Compose-X

	ECS Compose-X

	Requirements

	Installation

	ECS Compose-X as an AWS CloudFormation Macro

	Contributing

Compatibility Matrix

	AWS ECS (and AWS Fargate) Features

	Docker Compose

	Docker AWS ECS Plugin

	AWS IAM Policies from AWS SAM

Docker Compose syntax

	services

	volumes

	secrets

	networks

	logging

Services-level Extension Fields

	deploy

	x-scaling

	x-iam

	x-network

	x-logging

	x-xray

	x-codeguru-profiler

Compose-X syntax

	Common syntax for x-resources

	x-dynamodb

	x-rds

	x-docdb

	x-elastic_cache

	x-s3

	x-efs

	x-appmesh

	x-dns

	x-elbv2

	x-acm

	x-kinesis

	x-sqs

	x-sns

	x-events

	x-kms

	x-vpc

	x-cluster

	x-alarms

	spot_config

Docker ECS Plugin support

	Docker ECS Plugin support

Additional content

	History
	0.14.0 (2021-03-23)

	0.13.0 (2021-03-10)

	0.12.0 (2021-01-31)

	0.11.0 (2021-01-14)

	0.10.0 (2020-12-13)

	0.9.0 (2020-11-26)

	0.8.0 (2020-10-09)

	0.7.0 (2020-08-12)

	0.6.0 (2020-08-03)

	0.5.3 (2020-07-30)

	0.5.2 (2020-07-30)

	0.5.1 (2020-07-28)

	0.5.0 (2020-07-27)

	0.4.0 (2020-07-20)

	0.3.0 (2020-06-21)

	0.2.3 (2020-04-16)

	0.2.2 (2020-04-10)

	0.2.1 (2020-05-03)

	0.1.3 (2020-04-13)

	0.1.2 (2020-04-04)

	0.1.1 (2020-04-02)

	0.1.0 (2020-03-24)

	Extras
	Plug & Play to existing resources with auto discovery

	Docker ECS-Plugin x-aws-keys support

	AWS AppMesh integration

	Services autoscaling integration

	Fargate CPU/RAM auto configuration

	Multiple services, one microservice

	Philosophy
	Trying to implement DevOps starting with developers

	Community focused

	Ensure things work

	Provision other AWS resources your services need

	How does it work?

	What does ECS Compose-X do differently? Long version

	Why did I create ECS Compose-X?

	Why am I not using AWS CDK?

	Implementing least privileges at the heart of ECS Compose-X

Thanks & Credits

	Contributors

	Credits

Indices and tables

	Index

	Module Index

	Search Page

ECS Compose-X

[image: PYPI_VERSION] [https://pypi.python.org/pypi/ecs_composex] [image: PyPI - License] [https://github.com/compose-x/ecs_composex/blob/master/LICENSE]

[image: CodeStyle] [https://pypi.org/project/black/] [image: TDD with pytest] [https://docs.pytest.org/en/latest/contents.html] [image: BDD with Behave] [https://behave.readthedocs.io/en/latest/]

[image: Code scan with SonarCloud] [https://sonarcloud.io/dashboard?id=compose-x_ecs_composex]

[image: BUILD]

Manage, Configure and deploy your applications/services and AWS resources from your docker-compose definitions

Why use ECS Compose-X?

As a developer, working locally is a crucial part of your day to day work, and docker-compose allows you to do
just that, for simple services as well as very complex structures.

Your prototype works, and you want to deploy to AWS. But what about IAM ? Networking ? Security ? Configuration ?

Using ECS Compose-X, you keep your docker-compose definitions as they are, add the AWS services you have chosen
as part of that definition, such as ELB, RDS/DynamodDB Databases etc, and the program will automatically
generate all the AWS CloudFormation templates required to deploy all your services.

It automatically takes care of network access requirements and IAM permissions, following best practices.

Installation

ECS Compose-X can be used as a CLI ran locally, in CICD pipelines, or as an AWS CloudFormation macro, allowing you
to use your Docker Compose files directly in CloudFormation!

On AWS using AWS CloudFormation Macro

You can now deploy the CloudFormation macro to your AWS Account using AWS Serverless Application Repository (SAR).

Deploy it in your account today [image: AWS_SAR] [https://serverlessrepo.aws.amazon.com/applications/eu-west-1/518078317392/compose-x]

Find out how to use ECS Compose-X in AWS here [https://blog.compose-x.io/posts/use-your-docker-compose-files-as-a-cloudformation-template/index.html]

Via pip

pip install ecs_composex

CLI Usage

usage: ecs-compose-x [-h] {up,render,create,config,init,version} ...

positional arguments:
 {up,render,create,config,init,version}
 Command to execute.
 up Generates & Validates the CFN templates,
 Creates/Updates stack in CFN
 render Generates & Validates the CFN templates locally. No
 upload to S3
 create Generates & Validates the CFN templates locally.
 Uploads files to S3
 config Merges docker-compose files to provide with the final
 compose content version
 init Initializes your AWS Account with prerequisites
 settings for ECS
 version ECS Compose-X Version

optional arguments:
 -h, --help show this help message and exit

Examples

Render all your CFN templates from your docker compose and extension files
ecs-compose-x render --format yaml -n my-awesome-app -f docker-compose.yml -f aws.yml -d outputs

Deploy / Update your application to AWS
ecs-compose-x up --format yaml -n my-awesome-app -f docker-compose.yml -f aws.yml -d outputs

How is it different ?

There are a lot of similar tools out there, including published by AWS. So here are a few of the features
that we think could be of interest to you.

Modularity / “Plug & Play”

The majority of people who are going to use ECS Compose-X on a daily basis should be developers who need to have an
environment of their own and want to quickly iterate over it.

However, it is certainly something that Cloud Engineers in charge of the AWS accounts etc. would want to use to make their own lives easy too.

In many areas, you as the end-user of Compose-X will already have infrastructure in place: VPC, DBs and what not.
So as much as possible, you will be able in Compose-X to define Lookup sections which will find your existing resources,
and map these to the services.

Built for AWS Fargate

However the original deployments and work on this project was done using EC2 instances (using SpotFleet), everything
is now implemented to work on AWS Fargate First (2020-06-06).

That said, all features that can be supported with EC2 instances are available to you with ECS Compose-X, which, will
simply disable such settings when deployed on top of AWS Fargate.

Attributes auto-correct

A fair amount of the time, deployments via AWS CloudFormation, Ansible and other IaC will fail because of incompatible
settings. This happened a number of times, with a lot of different AWS Services.

Whilst giving you the ability to use all properties of AWS CloudFormation objects, whenever possible, ECS Compose-X
will understand how two services are connected and will auto-correct the settings for you.

For example, if you set the Log retention to be 42 days, which is invalid, it will automatically change that to the
closest valid value (here, 30).

Credits

This package would not have been possible without the amazing job done by the AWS CloudFormation team!
This package would not have been possible without the amazing community around Troposphere [https://github.com/cloudtools/troposphere]!
This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Requirements

AWS Account configuration

IAM Permissions to execute ECS Compose-X

Since ECS Compose-X adds more and more features, we highly recommend to use the AWS Managed policy
arn:aws:iam:aws::policy/ReadOnlyAccess.

Additionally, you will need to use all the features and push your files to S3

ECS Compose-X specific permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowFullCloudFormationAccess",
 "Effect": "Allow",
 "Resource": [
 "*"
],
 "Action": [
 "cloudformation:*"
]
 },
 {
 "Sid": "S3BucketObjectsAccess",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::${BucketName}/*"
],
 "Action": [
 "s3:PutObject"
]
 },
 {
 "Sid": "S3BucketAccess",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::${BucketName}"
],
 "Action": [
 "s3:CreateBucket",
 "s3:ListBucket"
]
 }
]
}

ECS Settings

Because of my adhesion to using the Cloud Provider’s tools for monitoring, logging, etc, some features and options
are enabled and you would get CloudFormation complain about account level settings not being enabled.

Depending on how you are setting up your AWS account(s) you might have to activate these settings if you haven’t already.

Note

It is important that you enable AWS VPC Trunking to allow each service tasks to run within the same SecurityGroup and use the extended number of ENIs per instance.
Reference: Container ENI [https://docs.aws.amazon.com/AmazonECS/latest/developerguide/container-instance-eni.html]
Announcement: AWS VPC mode [https://aws.amazon.com/about-aws/whats-new/2019/06/Amazon-ECS-Improves-ENI-Density-Limits-for-awsvpc-Networking-Mode/]

ECS Account settings can be found at https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-account-settings.html

	ECS - VPC Trunking

	ECS Extended logs and monitoring

Tip

You can now simply run ecs-composex init in order to do all of the following and create your default S3 bucket
for your CFN templates

ecs-composex init

Deploy manually

aws ecs put-account-setting-default --name awsvpcTrunking --value enabled
aws ecs put-account-setting-default --name serviceLongArnFormat --value enabled
aws ecs put-account-setting-default --name taskLongArnFormat --value enabled
aws ecs put-account-setting-default --name containerInstanceLongArnFormat --value enabled
aws ecs put-account-setting-default --name containerInsights --value enabled

Hint

If you want to enable these settings for a specific IAM role you can assume yourself, from CLI you can use aws ecs put-account-setting as opposed to aws ecs put-account-setting-default

aws ecs put-account-setting --name awsvpcTrunking --value enabled
aws ecs put-account-setting --name serviceLongArnFormat --value enabled
aws ecs put-account-setting --name taskLongArnFormat --value enabled
aws ecs put-account-setting --name containerInstanceLongArnFormat --value enabled
aws ecs put-account-setting --name containerInsights --value enabled

Installation

Deploy to your AWS Account

	Region

	Lambda Layer based Macro

	Docker based Macro

	us-east-1

	[image: LAYER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

	eu-west-1

	[image: LAYER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

Stable release

From Pip

To install ECS-Compose-X, run this command in your terminal:

$ pip install ecs_composex

This is the preferred method to install ECS-Compose-X, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guides
you through the process.

From sources

The sources for ECS-Compose-X can be downloaded from the Github repo [https://github.com/lambda-my-aws/ecs_composex].

You can either clone the public repository:

$ git clone git://github.com/lambda-my-aws/ecs_composex

Or download the tarball [https://github.com/lambda-my-aws/ecs_composex/tarball/master]:

$ curl -OJL https://github.com/lambda-my-aws/ecs_composex/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

ECS Compose-X as an AWS CloudFormation Macro

Deploy to your AWS Account

	Region

	Lambda Layer based Macro

	Docker based Macro

	us-east-1

	[image: LAYER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

	eu-west-1

	[image: LAYER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

Use with an existing docker-compose file

Say you already have a docker-compose file, and you would like to re-use it as a CloudFormation template.
Well you now can, with the CloudFormation macro for ECS Compose-X.

Now, AWS CloudFormation would try to evaluate everything in your current file, which has neither resources, or parameters etc.
So this is not a valid CloudFormation template.

For that to work though, all you have to do is add the following lines to your template

Transform:
 - compose-x

From there, you can deploy your template from the AWS Console or from the CLI, for example, as shown below

CAPABILITIES="APABILITY_AUTO_EXPAND CAPABILITY_IAM CAPABILITY_NAMED_IAM"
aws cloudformation create-stack --template-body file://merged.yml --capabilities ${CAPABILITIES} --stack-name macro-demo

Hint

If you have multiple docker-compose files you wish to use, you can either do so via Use with files stored in AWS S3
or simply merge the multiple YAML files together.

Use with files stored in AWS S3

If you have multiple files and through CICD or otherwise, and decided to store them in AWS S3, you can then re-use these
files directly from there.

Fn::Transform:
 Name: compose-x
 Parameters:
 ComposeFiles:
 - s3://files.compose-x.io/docker-compose.yml
 - s3://files.compose-x.io/aws.yml
 BucketName: !Sub cfn-templates-${AWS::Region}-${AWS::AccountId}

Customize to your needs or requirements

The provided templates that will allow you to create the Lambda function for the macro and the macro itself, requires
an IAM role. Given all the features supported by ECS Compose-X you might want to customize the IAM permissions of the
IAM role assigned to the Lambda function.

The current IAM permissions are permissive to gather any information in the account in order to use the Lookup* feature.

Using multi-account lookup

If you wish to use the Lookup feature, this is totally possible. Simply ensure that your docker-compose
file indicates which RoleArn to use for the specific lookup and adapt the IAM role of the Lambda function role to allow
sts:AssumeRole on that role ARN you are indicating.

CFN Macro Parameters

Parameters syntax reference

ComposeFiles: <list>
BucketName: <str>

ComposeFiles

The List of files you want to have compiled together in order to deploy your stack

Attention

Just like with the CLI, the order in which the files are composed together (first file least priority, last highest priority)
the order you list files in ComposeFiles matters in the same way.

BucketName

The name of the Bucket you have allowed the Lambda Function used for the CFN Macro to upload files to.

Current Limitations

environment files (env_files)

Because of the nature of the syntax requirement for env_files, these are not supported to work with the CFN macro, as the
files are not present in the local filesystem.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/compose-x/ecs_composex/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ECS-ComposeX could always use more documentation, whether as part of the
official ECS-ComposeX docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/lanbda-my-aws/ecs_composex/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ecs_composex for local development.

	Fork the ecs_composex repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/ecs_composex.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ecs_composex
$ cd ecs_composex/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ make lint
$ make coverage

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests. Use make coverage to run both tests and coverage analysis.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst of the module.

Tips

To run a subset of tests:

$ make test
$ make coverage

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

AWS CodeBuild will build and run the tests

AWS ECS (and AWS Fargate) Features

Container Definition

	Property Name

	Supported

	Override

	Note/Extras

	Compose/X Property

	Command

	Y

	Y

	
	service.command

	
	
	
	
	

	Cpu

	Y

	Y

	Auto-defined if not
set for Fargate

	service.deploy.resources

	DependsOn

	Y

	Y

	When joined to same family,
can depend on each other

	service.deploy.labels.ecs.task.family
service.deploy.labels.ecs.depends.condition

	DisableNetworking

	N

	N

	N/A

	

	DnsSearchDomains

	N

	N

	Not supported with AWS Fargate

	

	DnsServers

	N

	N

	Not supported with AWS Fargate

	

	DockerLabels

	N

	Y

	Will be added in future version

	

	DockerSecurityOptions

	N

	N

	Not supported with AWS Fargate

	

	EntryPoint

	Y

	Y

	
	service.entrypoint

	Environment

	Y

	Y

	
	service.environment

	EnvironmentFiles

	Y

	Y

	files automatically copied from
local to AWS S3

	service.env_file

	Essential

	Y

	Y

	Automatically determined based
on other deploy labels

	

	ExtraHosts

	N

	N

	Not supported with AWS Fargate

	

	FirelensConfiguration

	N

	N

	
	

	HealthCheck

	Y

	Y

	Full docker-compose support
with commands.
Separate healcheck with ELBv2

	service.healthcheck

	Hostname

	Y

	Y

	Disabled with AWS Fargate

	

	Image

	Y

	Y

	
	service.image

	Interactive

	N

	N

	
	

	Links

	N

	N

	Not supported with awsvpc network

	

	LinuxParameters

	N

	N

	
	

	LogConfiguration

	Y

	Y

	Full AWS CloudWatch support

	service.logging
service.x-logging

	Memory

	Y

	Y

	Auto-defined if not
set for Fargate

	service.deploy.resources

	MemoryReservation

	
	
	
	service.deploy.resources

	MountPoints

	Y

	Y

	
	service.volumes

	Name

	Y

	Y

	Generated by CFN

	service.name

	PortMappings

	Y

	Y

	Full support. Overrides to
awsvpc for network

	service.ports

	Privileged

	N

	N

	Not supported with AWS Fargate

	

	PseudoTerminal

	N

	N

	
	

	ReadonlyRootFilesystem

	N

	N

	
	

	RepositoryCredentials

	Y

	Y

	
	service.x-aws-pull_policy

	ResourceRequirements

	N

	N

	
	

	Secrets

	Y

	Y

	Strongly automated for RDS and others

	secrets.x-secrets

	StartTimeout

	N

	N

	
	

	StopTimeout

	N

	N

	
	

	SystemControls

	N

	N

	
	

	Ulimits

	Y

	Y

	Automatically disable non AWS Fargate
supported

	service.ulimits

	User

	Y

	Y

	Expects IDs as docker-compose does

	service.user

	VolumesFrom

	N

	N

	To be implemented

	

	WorkingDirectory

	N

	N

	
	

Task Definition

	Property Name

	Supported

	Override

	Note/Extras

	Compose/X Property

	ContainerDefinitions

	Y

	Y

	Strictly generated by
Compose-X

	services

	Cpu

	Y

	Y

	Automatic value for Fargate
based on service.resources

	deploy.resources
deploy

	ExecutionRoleArn

	Y

	Y

	Strictly generated by Compose-X

	x-iam

	Family

	Y

	Y

	Uses service name or uses label

	deploy.labels.ecs.task.family
labels

	InferenceAccelerators

	N

	N

	
	

	IpcMode

	N

	N

	
	

	Memory

	Y

	Y

	
	Auto computed for AWS Fargate
	based on deploy.resources

	deploy.resources

	NetworkMode

	Y

	N

	Always awsvpc

	

	PidMode

	N

	N

	Not supported in Fargate

	

	PlacementConstraints

	N

	N

	Not applicable to Fargate

	

	ProxyConfiguration

	Y

	Y

	See x-appmesh

	x-appmesh

	RequiresCompatibilities

	Y

	N

	EC2 and Fargate always defined

	

	Tags

	Y

	Y

	Generated by Compose-X

	See x-tags

Service Definition

	Property Name

	Supported

	Override

	Note/Extras

	Compose/X Property

	CapacityProviderStrategy

	N

	
	
	

	Cluster

	Y

	Y

	x-cluster to
create or use

	x-cluster

	DeploymentConfiguration

	N

	
	
	

	DeploymentController

	Y

	N

	To date, only
ECS

	

	DesiredCount

	Y

	N/A

	
	service.deploy.replicas
deploy
x-scaling

	EnableECSManagedTags

	Y

	N

	
	

	LoadBalancers

	Y

	N/A

	
	x-elbv2

	NetworkConfiguration

	Y

	Y

	
	service.networks
x-network

	PlacementConstraints

	N

	N/A

	
	

	PlacementStrategies

	N

	N/A

	
	

	PlatformVersion

	Y

	Y

	Default to 1.4.0 for
full features support

	

	PropagateTags

	Y

	N

	
	

	Role

	Y

	N

	Can extend default
with x-aws- or x-iam

	x-iam

	SchedulingStrategy

	N

	N/A

	
	

	ServiceArn

	N

	N/A

	
	

	ServiceName

	Y

	N

	Stricly generated by
AWS CFN

	

	ServiceRegistries

	Y

	Y

	See AppMesh

	x-appmesh

	Tags

	Y

	Y

	
	

	TaskDefinition

	Y

	N

	Strictly generated
by Compose-X and AWS CFN

	

Cluster definition

All properties for AWS::ECS::Cluster are supported. Pass them through x-cluster

Docker Compose

services

	Property Name

	Supported

	Note/Extras

	Replaced By

	Reference

	build

	N

	
	
	

	cap_add

	Y

	
	
	

	cap_drop

	Y

	
	
	

	command

	Y

	
	
	

	configs

	N

	
	
	

	cgroup_parent

	N

	
	
	

	container_name

	Y

	
	
	

	credential_spec

	N

	
	
	

	deploy

	Y

	
	
	

	devices

	N

	
	
	

	depends_on

	Y

	
	
	

	dns

	N

	
	
	

	dns_search

	N

	
	
	

	domainname

	N

	
	
	

	tmpfs

	N

	
	
	

	entrypoint

	Y

	
	
	

	env_file

	Y

	
	
	

	environment

	Y

	
	
	

	expose

	N

	
	
	

	external_links

	N

	
	
	

	extra_hosts

	N

	
	
	

	group_add

	N

	
	
	

	healthcheck

	Y

	
	
	

	hostname

	N

	
	
	

	image

	Y

	x-aws-pull_policy
supported

	
	

	isolation

	N

	
	
	

	labels

	Y

	
	
	

	links

	Y

	Ignored when using
AWS Fargate

	
	

	logging

	Y

	
	
	

	network_mode

	N

	Always set to awsvpc

	
	

	networks

	Y

	
	
	

	pid

	N

	
	
	

	ports

	Y

	long and short
syntax
always awsvpc

	
	

	secrets

	Y

	x-secrets

	
	

	security_opt

	N

	
	
	

	stop_grace_period

	N

	
	
	

	stop_signal

	N

	Incompatible with
AWS ECS

	
	

	sysctls

	Y

	Ignored when using
AWS Fargate

	
	

	ulimits

	Y

	only nofile for
Fargate

	
	

	userns_mode

	N

	Incompatible with
AWS ECS

	
	

	volumes

	Y

	x-efs and nfs
autodetect

	
	

	restart

	N

	Incompatible with
AWS ECS

	
	

	shm_size

	Y

	Ignored when using
AWS Fargate

	
	

	read_only

	Y

	
	
	

	working_dir

	Y

	
	
	

deploy

Tip

See x-scaling and deploy for more scaling settings.
See labels for more details on combining services into a single task definition

Hint

Not all ulimits [https://docs.docker.com/compose/compose-file/compose-file-v3/#ulimits] are supported in AWS Fargate. ECS Compose-X Will automatically deactivate the ones not supported.

Tip

user expects the format uid:gid to use, users and group names aren’t supported.

volumes

	Property Name

	Supported

	Notes/Extras

	Replaced By

	Reference

	driver

	Y

	nfs autodetect
for NFS with AWS EFS

	
	

	driver_opts

	Y

	supports ecs-plugin
definition

	
	

	driver_opts.type

	Y

	override to bind
for Fargate

	
	

	driver_opts.o

	N

	
	
	

	driver.name

	Y

	efs/nfs autodetect for
NFS with AWS EFS

	
	

	labels

	N

	
	
	

	external

	
	Auto defines
x-efs.use

	
	

	name

	Y

	Auto defines

	
	

network

Supported with mapping of AWS VPC & Subnets.

Hint

However DNS features are not supported, you can define a number of DNS Settings for your deployment.
See x-dns

Docker AWS ECS Plugin

	Property Name

	Supported

	Compose/X refinement

	Reference

	Notes

	x-aws-cluster

	Y

	x-cluster

	x-aws-cluster |

	x-aws-pull_credentials

	Y

	
	x-aws-pull_credentials

	

	x-aws-autoscaling

	Y

	x-scaling

	x-aws-autoscaling

	

	x-aws-policies

	Y

	x-iam

	x-aws-policies

	

	x-aws-role

	Y

	x-iam

	x-aws-role

	

	x-aws-logs_retention

	Y

	x-logging

	x-aws-logs_retention

	Compose-X Autocorrect
to closest valid value

	x-aws-min_percent

	Y

	
	x-aws-min_percent & x-aws-max_percent

	

	x-aws-max_percent

	Y

	
	x-aws-min_percent & x-aws-max_percent

	

AWS IAM Policies from AWS SAM

ECS Compose-X has defined some IAM permissions for each resource types. In order to provide developers with greater
flexibility and use well known system, Compose-X also imports IAM definitions from AWS Serverless Application Model.

You can find all the policies define in AWS SAM in AWS Documentation pages [https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html].

Example

ECS Compose-X Policy for SQS

services:
 QueueConsumer: {} # Service definition

x-sqs:
 QueueA:
 Services:
 - name: QueueConsumer
 access: RWMessages

Using AWS SAM Policy

services:
 QueueConsumer: {} # Service definition

x-sqs:
 QueueA:
 Services:
 - name: QueueConsumer
 access: SQSPollerPolicy

In the example above, we are using the SQSPollerPolicy which is already defined for us by AWS SAM.

services

We try to re-use as much as possible the docker compose (v3) reference as much as possible.

For the definition of the services, you can simply use the already existing Docker compose definition for your services.
Most of the docker-compose services keys are functional, to get a full breakdown, check the Docker Compose compatibily matrix.

See also

Docker Compose 3 file reference [https://docs.docker.com/compose/compose-file/compose-file-v3/]

Note

Any property in the docker-compose file you have today, for example, build is simply ignored.
It will be neither removed nor modified

Hint

Checkout the ECS ComposeX secrets definition syntax secrets to import AWS Secrets Manager
secrets to your container.

volumes

This section covers the integration compatibility with docker-compose volumes into AWS ECS.

See also

docker-compose volumes [https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference]
docker-compose services volumes [https://docs.docker.com/compose/compose-file/compose-file-v3/#volumes]

Understand Local volumes vs shared volumes vs persistent volumes

In docker world, one can create docker volumes and attach these to the containers.

As very well synthesized in the tmpfs [https://docs.docker.com/storage/tmpfs/] documentation page, we have

Volumes and bind mounts let you share files between the host machine and container so that you can persist data even after the container is stopped.

If you’re running Docker on Linux, you have a third option: tmpfs mounts. When you create a container with a tmpfs mount, the container can create files outside the container’s writable layer.

As opposed to volumes and bind mounts, a tmpfs mount is temporary, and only persisted in the host memory. When the container stops, the tmpfs mount is removed, and files written there won’t be persisted.

In AWS ECS you can use all 3 modes, although, tmpfs is not supported when deploying containers with AWS Fargate, as the host
might be shared with other customers, this could create a surface of attack between containers.

Also, it is worth noting that in AWS Fargate, you cannot use the bind mounts from the host: again, shared host, this could
create a surface of attack from one account to another.

But, that does not mean that in AWS Fargate you cannot create additional volumes outside of your image layers.
In fact, AWS Fargate 1.4.0 comes with some encrypted storage for your tasks among other features.

See also

AWS Fargate 1.4.0 announcement [https://aws.amazon.com/about-aws/whats-new/2020/04/aws-fargate-launches-platform-version-14/]

Implementation in the AWS + Docker ECS Plugin

The ECS Plugin which allows you to define, in a similar way to ECS Compose-X, your volumes, is of the opinion
that any volume you would create is going to be a shared persistent volume using AWS EFS.

As you can see in these examples [https://docs.docker.com/cloud/ecs-compose-examples/#volumes], you can either leave things by default or define some EFS equivalent properties
to define your volumes.

See also

docker - ecs - volumes syntax reference [https://docs.docker.com/cloud/ecs-integration/#volumes]

Implementation in ECS Compose-X

To maintain compatibility with the ECS Plugin, if you did specify that the driver should be nfs or efs (although this is not
a supported network driver!), ECS Compose-X will create for you a new FS etc. allowing your containers to connect.

However, by default, ECS Compose-X will follow the behaviour described in the docker-compose volumes [https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference] reference, which is
to respect the driver and driver_opts settings.

Define a volume for the task only

Although you cannot create a tmpfs in AWS Fargate, you might for consistency with your local development, define a volume just
to mount to a specific path.

As per the docker-compose volumes [https://docs.docker.com/compose/compose-file/compose-file-v3/#volume-configuration-reference] reference, we could have the following

services:
 service-01:
 volumes:
 # Just specify a path and let the Engine create a volume
 - /var/lib/mysql

There what ECS Compose-X will do is to create in the task definition a new volume using the local driver volume type,
and assign that to the container definition in the task definition specifically.

Define a shared volume between tasks

Alternatively, and this is where the Docker ECS Plugin and ECS Compose-X differ, is in the use of the volumes top-level
instruction: unless specified otherwise, the volume will be treated as a local but shared volume.

volumes:
 shared-volume:

services:
 serviceA:
 volumes:
 - shared-volume:/mnt/shared:rw

 serviceB:
 volumes:
 - source: shared-volume
 target: /mnt/shared
 read_only: false
 type: volume

In the above example, we would get a volume created and mounted to both containers.

Define a shared volume using AWS EFS

This is where ECS ComposeX merges back with the Docker ECS Plugin syntax: you can use the same syntax as defined by the
Docker ECS Plugin, for example

Using the ECS Plugin syntax reference

services:
 test:
 image: my-app
 volumes:
 - db-data:/app/data
volumes:
 db-data:
 driver_opts:
 backup_policy: ENABLED
 lifecycle_policy: AFTER_30_DAYS
 performance_mode: maxIO
 throughput_mode: provisioned
 provisioned_throughput: 1024

If you were to use that definition in your compose file with ECS Compose-X, a new EFS will be created with the settings
above, along with all the necessary settings for it.

Using the ECS Compose-X specific reference

As usual, you can also define in ECS Compose-X a more comprehensive set of parameters to better define what you want to
achieve, using the x-efs key.

To go into more details about using x-efs, refer to x-efs

secrets

As you might have already used these, docker-compose allows you to define secrets to use for the application.

To help continue with docker-compose syntax compatibility, you can now declare your secret in docker-compose,
and add an extension field which will be a direct mapping to the secret name you have in AWS Secrets Manager.

ECS ComposeX will automatically add IAM permissions to the execution role of your Task definition and will export the secret
to your container, using the same name as in the compose file.

See also

docker-compose secrets reference [https://docs.docker.com/compose/compose-file/#secrets]

Hint

For security purposes, the containers envoy and xray-daemon are not getting assigned the secrets.

Syntax

x-secrets:
 Name: str
 LinksTo: []
 JsonKeys: []
 Lookup: {}

Name

Type: String

The name of the secret in secrets manager to use and import.

Hint

If you want to put the full ARN, you can. There will be a validation for it.

LinksTo

Type: List of Strings

AllowedValues:

	EcsExecutionRole

	EcsTaskRole

If you believe that your service application should have access to the secret via Task Role, simply add to the
secret definition as follows:

secret-name:
 x-secrets:
 Name: String
 LinksTo:
 - EcsExecutionRole
 - EcsTaskRole

Warning

If you do not specify EcsExecutionRole when specifying LinksTo then you will not get the secret exposed
to your container via AWS ECS Secrets property of your Container Definition

JsonKeys

Type: List of objects/dicts

Note

Only Fargate 1.4.0+ Platform Version supports secrets JSON Key

JsonKeys objects structure

SecretKey: str
VarName: str
Transform: str

SecretKey

Name of the JSON Key in your secret.

VarName

The Name of the secret specifically for the secret JSON key

Transform

When you want to transform the original secret key into something else, here are simple transforms.

java_properties

Take a string and replaces all letters to their uppercase version and replaces . with _

title

Set to uppercase the first letter of every word. some.properties becomes Some.Properties

capitalize

Changes all letters from lower case to uppercase but does not change anything else.

Examples

Short example

secrets:
 topsecret_info:
 x-secrets:
 Name: /path/to/my/secret

services:
 serviceA:
 secrets:
 - topsecret_info

Secret with assignment to Task and Execution Role

secrets:
 abcd: {}
 john:
 x-secrets:
 LinksTo:
 - EcsExecutionRole
 - EcsTaskRole
 Name: SFTP/asl-cscs-files-dev

Secret Looked up from Tags and Name, also using JsonKeys

secrets:
 zyx:
 x-secrets:
 Name: secret/with/kmskey
 Lookup:
 Tags:
 - costcentre: lambda
 - composexdev: "yes"
 JsonKeys:
 - SecretKey: username
 VarName: PSQL_USERNAME
 - SecretKey: password
 VarName: PSQL_PASSWORD

Secret with assignment to Task and Execution Role

secrets:
 abcd: {}
 john:
 x-secrets:
 LinksTo:
 - EcsExecutionRole
 - EcsTaskRole
 Name: arn:aws:secretsmanager:eu-west-1:123456789012:secret:/secret/abcd

networks

In docker-compose one can define diffent subnets which would use different properties, as documented
here [https://docs.docker.com/compose/compose-file/#network-configuration-reference]

This allows you to logically bind services on different networks etc, very useful in many scenarios.

In ECS ComposeX, we have added support to allow you to define these networks and logically associate them with AWS VPC Subnets.

Refer to x-vpc for a full review of ECS ComposeX syntax definition for subnets mappings.

You can now define extra subnet groups based on different tags and map them to your services for override when using
Lookup or Use

Extra subnets definition

x-vpc:
 Lookup:
 VpcId: {}
 AppSubnets: {}
 StorageSubnets: {}
 PublicSubnets: {}
 Custom01:
 Tags: {}

define compose networks and associate to a Subnet category

networks:
 custom01:
 x-vpc: Custom01

Map a compose defined network to a service

services:
 serviceA:
 networks:
 - custom01

 serviceB:
 networks:
 custom01: {}

Note

As per docker-compose config, the rendered networks in a service is a map / object. But it also can be a list.

logging

In AWS ECS you can define the log driver in a similar way as you do locally.
In ECS Compose-X, default settings will be applied and use awslogs driver [https://docs.aws.amazon.com/AmazonECS/latest/userguide/using_awslogs.html] by default.

For more information on the docker-compose logging syntax, refer to Docker Compose logging syntax reference [https://docs.docker.com/compose/compose-file/compose-file-v3/#logging]

Supported drivers

Currently, any other driver is ignored and AWS Logs is used by default. This is to guarantee deployment success on
AWS ECS with AWS Fargate.

awslogs

	Option Name

	Required

	Notes/Features

	awslogs-create-group

	False

	Compose-X creates a new
log group by default

	awslogs-region

	True

	When specified, Compose-X
only handles IAM to grant.

If not set, defaults to AWS::Region

	awslogs-endpoint

	False

	

	awslogs-group

	True

	Defaults to family name when unset

	awslogs-stream-prefix

	True

	Defaults to service name when unset

	awslogs-datetime-format

	False

	

	awslogs-multiline-pattern

	False

	

	mode

	False

	

	max-buffer-size

	False

	

Hint

To set the log retention period, you can use x-logging or x-aws-logs_retention

deploy

The deploy section allows to set various settings around how the container should be deployed, and what compute resources
are required to run the service.

For more details on the deploy, see docker documentation for deploy here [https://docs.docker.com/compose/compose-file/compose-file-v3/#deploy]

At the moment, all keys are not supported, mostly due to the way Fargate by nature is expecting settings to be.

resources

The resources allow you to define the CPU/RAM reservations and limits. In AWS ECS, the CPU only has one attribute, so
ECS Compose-X will use the highest value of the two if both set.

Once the container definitions have been generated, the CPU and RAM requirements are added up together.
From there, it will automatically select the closest valid Fargate CPU/RAM combination and set the parameter for the Task.

Important

CPUs should be set between 0.25 and 4 to be valid for Fargate, otherwise you will have an error.

replicas

This setting allows you to define how many tasks should be running for a given service.
The value is used to define MicroserviceCount.

labels

These labels aren’t used for much in native Docker compose as per the documentation. They are only used for the service,
but not for the containers themselves. Which is great for us, as we can then leverage that structure to implement a
merge of services.

In AWS ECS, a Task definition is a group of one or more containers which are going to be running as a one task.
The most usual use-case for this, is with web applications, which need to have a reverse proxy (ie. nginx) in front
of the actual application. But also, if you used the use_xray option, you realized that ECS ComposeX automatically
adds the x-ray-daemon sidecar. Equally, when we implement AppMesh, we will also have another side-car container for this.

So, here is the tag that will allow you to merge your reverse proxy or waf (if you used a WAF in container) fronting
your web application:

ecs.task.family

For example, you would have:

base file for services with the x-keys for BDD
version: '3.8'
secrets:
 abcd: {}
 john:
 x-secrets:
 LinksTo:
 - EcsExecutionRole
 - EcsTaskRole
 Name: SFTP/asl-cscs-files-dev
 zyx:
 x-secrets:
 Name: secret/with/kmskey
 Lookup:
 Tags:
 - costcentre: lambda
 JsonKeys:
 - VarName: ZYX_TEST
 SecretKey: test
services:
 app01:
 logging:
 driver: awslogs
 options:
 awslogs-group: a-custom-name
 awslogs-create-group: "true"
 sysctls:
 - net.core.somaxconn=2048
 - net.ipv4.tcp_syncookies=1
 cap_add:
 - ALL
env_file: ./use-cases/env-files/dummy.env
 deploy:
 update_config:
 failure_action: rollback
 labels:
 ecs.task.family: bignicefamily
 resources:
 reservations:
 cpus: '0.25'
 memory: 1GB
 environment:
 LOGLEVEL: DEBUG
 SHELLY: /bin/bash
 TERMY: screen
 image: nginx
 volumes:
 - type: tmpfs
 target: /tmp
 tmpfs:
 size: 1024
 - normal-vol:/var/tmp/shared
 - some-volume:/var/anotherpath:ro
 links:
 - app03:dateteller
 ports:
 - mode: awsvpc
 protocol: tcp
 published: 5000
 target: 5000
 secrets:
 - zyx
 x-logging:
 RetentionInDays: 42
 CreateLogGroup: False
 x-network:
 is_public: False
 UseCloudmap: True
 Ingress:
 Myself: False
 AwsSources:
 - Type: PrefixList
 Id: pl-6da54004
 x-iam:
 Policies:
 - PolicyName: AllowPublishToCw
 PolicyDocument:
 Statement:
 - Action:
 - cloudwatch:PutMetricData
 Effect: Allow
 Resource:
 - '*'
 Sid: AllowPublishMetricsToCw
 x-xray: false
 x-scaling:
 Range: "1-4"
 app02:
 depends_on:
 - app01
 - bignicefamily
env_file:
- ./use-cases/env-files/dummy.env
 deploy:
 update_config:
 failure_action: pause
 labels:
 ecs.task.family: youtoo
 replicas: 2
 resources:
 reservations:
 cpus: '0.1'
 memory: 64000kB
 environment:
 LOGLEVEL: DEBUG
 healthcheck:
 interval: 1m30s
 timeout: 10s
 start_period: 1h
 retries: 3
 test:
 - CMD
 - curl
 - localhost:5000/ping
 image: nginx
 ports:
 - mode: awsvpc
 protocol: tcp
 published: 5000
 target: 5000
 secrets:
 - zyx
 volumes:
 - source: some-volume
 target: /app/data
 type: volume
 x-iam:
 PermissionsBoundary: arn:aws:iam::aws:policy/AdministratorAccess
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AdministratorAccess
 x-scaling:
 Range: "1-5"
 TargetScaling:
 CpuTarget: 88
 DisableScaleIn: true
 x-xray: false
 tmpfs: /run
 app03:
 tmpfs:
 - /run
 - /tmp
 sysctls:
 net.core.somaxconn: 1024
 net.ipv4.tcp_syncookies: 0
 cap_add:
 - NET_ADMIN
 - SYS_PTRACE
 cap_drop:
 - SYS_ADMIN
 ulimits:
 nofile:
 soft: 1024
 hard: 2048
 nproc: 512
 x-aws-min_percent: 50
 x-aws-max_percent: 150
 deploy:
 resources:
 reservations:
 cpus: '0.25'
 memory: 134217728b
 environment:
 LOGLEVEL: DEBUG
 image: nginx
 ports:
 - mode: awsvpc
 protocol: tcp
 published: 5000
 target: 5000
 secrets:
 - abcd
 - zyx
 - john
 volumes:
 - /generated/volume/from/path
 - shared-images:/app/images
 - some-volume:/app/data:ro
 x-network:
 Ingress:
 Myself: False
 ExtSources:
 - Ipv4: 0.0.0.0/0
 Description: ANYWHERE

 x-logging:
 RetentionInDays: 30
 x-scaling:
 Range: 1-10
 rproxy:
 logging:
 driver: awslogs
 options:
 awslogs-region: us-east-1
 depends_on:
 - app01
 - app02
 deploy:
 labels:
 ecs.task.family: bignicefamily,youtoo
 replicas: 1
 resources:
 limits:
 cpus: '0.25'
 memory: 64M
 reservations:
 cpus: '0.1'
 memory: 32M
 image: nginx
 volumes:
 - normal-vol:/tmp/shared
 ports:
 - mode: awsvpc
 protocol: tcp
 published: 80
 target: 80
 x-iam:
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/ReadOnlyAccess
 x-xray: true
 x-network:
 is_public: False
 UseCloudmap: True

volumes:
 shared-images: {}
 some-volume: {}
 normal-vol: {}

x-dns:
 PrivateNamespace:
 Name: lambda.internal

x-tags:
 costcentre: lambda

Warning

The example above illustrates that you can either use, for deploy labels

	a list of strings

	a dictionary

ecs.depends.condition

This label allows to define what condition should this service be monitored under by ECS. Useful when container is set
as a dependency to another.

Hint

Allowed values are : START, SUCCESS, COMPLETE, HEALTHY. By default, sets to START, and if you defined healthcheck,
defaults to HEALTHY.
See Dependency reference for more information [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ecs-taskdefinition-containerdependency.html]

x-scaling

Contents

	x-scaling

	Range

	TargetScaling

	CpuTarget / RamTarget

	ScaleInCooldown / ScaleOutCooldown

	DisableScaleIn

This section allows to define scaling for the ECS Service.
For SQS Based scaling using step scaling, refer to SQS Documentation.

services:
 serviceA:
 x-scaling:
 Range: "1-10"
 TargetScaling:
 CpuTarget: 80

Range

Range, defines the minimum and maximum number of containers you will have running in the cluster.

#Syntax
Range: "<min>-<max>"
Example
Range: "1-21"

TargetScaling

Allows you to define target scaling for the service based on CPU/RAM.

target scaling syntax reference

x-scaling:
 Range: "1-10"
 TargetScaling:
 CpuTarget: int (will be casted to float)
 MemoryTarget: int (will be casted to float)
 ScaleInCooldown: int (ie. 60)
 ScaleOutCooldown: int (ie. 60)
 DisableScaleIn: boolean (True/False)

CpuTarget / RamTarget

Defines the CPU percentage that we want the service to be under. ECS will automatically create and adapt alarms to
scale the service in/out so long as the average CPU usage remains beneath that value.

Attention

Note that setting both should not be set at the same time, as you might end up into a racing condition.

ScaleInCooldown / ScaleOutCooldown

This allows you to define the Cooldown between scaling activities in order to limit drastic changes.

Hint

These are set only for the CPU and RAM targets, no impact on other scaling such as SQS.

DisableScaleIn

Default: False

Same as the original Property in the CFN definition, this will deny a service to scale in after it has scaled-out for
applications that do not support to scale-in.

Hint

If you define multiple services within the same family, the lowest value for CPU/RAM and highest for scale in/out
are used in order to minimize the impact and focus on the weakest point.

x-iam

Contents

	x-iam

	PermissionsBoundary

	Policies

	ManagedPolicies

This section is the entrypoint to further extension of IAM definition for the IAM roles created throughout.

PermissionsBoundary

This key represents an IAM policy (name or ARN) that needs to be added to the IAM roles in order to represent the IAM
Permissions Boundary.

Note

You can either provide a full policy arn, or just the name of your policy.
The validation regexp is:

r"((^([a-zA-Z0-9-_.\/]+)$)|(^(arn:aws:iam::(aws|[0-9]{12}):policy\/)[a-zA-Z0-9-_.\/]+$))"

Examples:

services:
 serviceA:
 image: nginx
 x-configs:
 iam:
 boundary: containers
 serviceB:
 image: redis
 x-configs:
 iam:
 boundary: arn:aws:iam::aws:policy/PowerUserAccess

Tip

if you specify ony the name, ie. containers, this will resolve into
arn:${AWS::Partition}:iam::${AWS::AccountId}:policy/containers

Policies

Allows you to define additional IAM policies.
Follows the same pattern as CFN IAM Policies

x-iam:
 Policies:
 - PolicyName: somenewpolicy
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - ec2:Describe*
 Resource:
 - "*"
 Sid: "AllowDescribeAll"

Tip

If you used the ECS Plugin from docker before, this is equivalent to x-aws-role

ManagedPolicies

Allows you to add additional managed policies. You can specify the full ARN or just a string for the name / path of the
policy. If will resolve into the same regexp as for PermissionsBoundary

Tip

If you used the ECS Plugin from docker before, this is equivalent to x-aws-policies

Hint

You can also use the Docker ECS-Plugin x-aws-iam extension fields with ECS ComposeX

x-network

Overview

UseCloudmap: bool
Ingress: {ingress_definition}

Contents

	x-network

	UseCloudmap

	Ingress definition

	Syntax reference

	Map VPC subnets to docker-compose networks

UseCloudmap

Boolean to turn on or off the integration to CloudMap for the services.

Default: False

Note

If you want to use appmesh and define x-appmesh in the template, automatically, all services will be registered
in AWS CloudMap.

Ingress definition

This allows you to define specific ingress control from external sources to your environment. For example, if you have
to whitelist IP addresses that are to be allowed communication to the services, you can list these, and indicate their
name which will be shown in the EC2 security group description of the ingress rule.

Syntax reference

Ingress:
 ExtSources: []
 AwsSources: []
 Myself: True/False

Ingress Example

services:
 app01:
 x-network:
 Ingress:
 ExtSources:
 - IPv4: 0.0.0.0/0
 Name: all
 - IPv4: 1.1.1.1/32
 Source_name: CloudFlareDNS
 AwsSources:
 - Type: SecurityGroup
 Id: sg-abcd
 - Type: PrefixList
 Id: pl-abcd
 Myself: True/False

Note

Future feature is to allow to input a security group ID and the remote account ID to allow ingress traffic from
a security group owned by another of your account (or 3rd party).

Hint

The protocol is automatically detected based on the port definition.
By default, it is TCP

Hint

To see details about the Ingress for Load Balancers, refer to Ingress

Hint

When using an ALB, you do not need to define that ALB security group etc., all inbound rules will be defined automatically
to allow the ALB to communicate with your service!

Map VPC subnets to docker-compose networks

AWS VPC to network mapping

networks:
 internal:
 x-vpc: InteralCustomSubnets

x-vpc:
 VpcId:
 Tags: []
 AppSubnets:
 Tags: []
 PublicSubnets:
 Tags: []
 StorageSubnets:
 Tags: []
 InteralCustomSubnets:
 Tags: []

services:
 serviceA:
 networks: [internal]

In some cases, you might have complex VPC topology and created new specific Subnets in x-vpc, and map that subnet
name to a docker-network defined network. Then later, you can set your service in the services definition to be put into
that network.

x-logging

The following parameter is identical in behaviour to x-aws-logs_retention defined in the docker ECS Plugin.

x-logging syntax definition

RetentionInDays: int

Hint

Alternatively you can use the ECS Plugin logging definition will ECS Compose-X will use.
If both are defined, priority goes to the highest value.

RetentionInDays

Value to indicate how long should the logs be retained for the service.

Hint

If the value you enter is not in the allowed values, will set to the closest accepted value.

Hint

Emulates the CW Logs property RetentionInDays Property [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-logs-loggroup.html#cfn-logs-loggroup-retentionindays]

Examples

services:
 serviceA:
 x-logging:
 RetentionInDays: 42

x-xray

This section allows to enable X-Ray to run right next to your container.
It will use the AWS original image for X-Ray Daemon and exposes the ports to the task.

Syntax reference

x-xray: True/False

Example

Enable XRay for your service.

services:
 serviceA:
 x-xray: True

See also

ecs_composex.ecs.ecs_service#set_xray

IAM permissions

Enabling XRay will automatically add the following managed policy to your task definition:

arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess

IAM policy definition

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries"
],
 "Resource": [
 "*"
]
 }
]
}

x-codeguru-profiler

Enables to use or create an existing/a new CodeProfiling group for your service.

Unlike most of the resources attachments, this is not done at the “family” level but at the service
level, as it might not be wanted to profile every single container in the task.

x-codeguru-profiler is a service/task level setting which offers a 1:1 mapping between your application
and the profiler.

Hint

Using ECS ComposeX, this automatically adds an Environment variable to your container,
AWS_CODEGURU_PROFILER_GROUP_ARN and AWS_CODEGURU_PROFILER_GROUP_NAME with the ARN
of the newly created Profiling Group.

Syntax reference / Examples

I wanted to make it easy for people to use as well as being flexible and support all CFN definition.

Syntax for setting pre-defined codeprifiling group without creating a new one.

x-codeguru-profiler: name (str)

Create a new CodeProfiling group with default settings.

x-codeguru-profiler: True|False (bool)

Properties as defined in AWS CFN for ProflingGroup

x-codeguru-profiler:
 AgentPermissions: Json
 AnomalyDetectionNotificationConfiguration:
 - Channel
 ComputePlatform: String
 ProfilingGroupName: String
 Tags:
 - Tag

See also

AWS CFN definition for CodeGuru profiling group [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-codeguruprofiler-profilinggroup.html]

Note

When you define the properties, in case you already had principals, it will still automatically
add the IAM Task Role to the list of Principals that should publish to the profiling group.

Code Example

Here is an example of a simple Flask application I added the codeguru profiler for.

import boto3
import logging
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.core import patcher, xray_recorder
from werkzeug.middleware.proxy_fix import ProxyFix
from codeguru_profiler_agent import Profiler
from app02 import APP

def start_app():
 debug = False
 if "DEBUG" in APP.config and APP.config["DEBUG"]:
 debug = True

 if "USE_XRAY" in APP.config and APP.config["USE_XRAY"]:
 xray_recorder.configure(service=APP.name)
 XRayMiddleware(APP, xray_recorder)
 xray_recorder.configure(service="app01")
 if "USE_XRAY" in APP.config and APP.config["USE_XRAY"]:
 patcher.patch(
 (
 "requests",
 "boto3",
)
)
 print("Using XRay")

 if APP.config["AWS_CODEGURU_PROFILER_GROUP_NAME"]:
 p = Profiler(
 profiling_group_name=APP.config["AWS_CODEGURU_PROFILER_GROUP_NAME"],
 aws_session=boto3.session.Session(),
)
 p.start()
 print(
 f"Started profiler {p} for {APP.config['AWS_CODEGURU_PROFILER_GROUP_NAME']}"
)
 logging.getLogger('codeguru_profiler_agent').setLevel(logging.INFO)

 APP.wsgi_app = ProxyFix(APP.wsgi_app)
 APP.run(host="0.0.0.0", debug=debug)

if __name__ == "__main__":
 start_app()

See also

Full Applications code used for this sort of testing can be found here [https://github.com/lambda-my-aws/composex-testing-apps/tree/main/app02]

Common syntax for x-resources

ECS ComposeX requires to expands onto the original Docker compose file defintion in order to map the docker compose
properties to their equivalent settings on AWS ECS and otherwise for the other “Extra” resources.

In general for each x- section of the docker compose document, we will find three attributes to each resource:

	Properties

	Settings

	Services

	Lookup

Properties

Unless indicated otherwise, these are the properties for the resource as you would define them using the AWS properties
in the AWS CloudFormation resource definition.

Warning

In order to update some resources, AWS Sometimes needs to create new ones to replace the once already in place,
depending on the type of property you are changing. To do so, AWS will need to have the name of the resource
generated, and not set specifically for it. It is a limitation, but in the case of most of the resources, it also
allows for continued availability of the service to the resources.

Therefore, some resources will not be using the Name value that you give to it, if you did so.

Lookup

Allows you to Lookup existing resources (tagged) that you would like to use with the new services you are deploying.
Everything with regards to the access and other properties, depending on the type of resources, will remain the same.

This is accomplished by using AWS Resources Group Tags API which means, at this point in time, you can only find resources
that are tagged.

Generic format for Lookup

Lookup:
 Tags:
 - Key: Value
 - Key: Value
 RoleArn: <str|optional>

Tags

The tags are a list of Tags that have been assigned to the resource. Based on the type of resource, this might
need to resolve to a single specific resource in your AWS account / region.

RoleArn

This allows you to provide the ARN of an IAM Role that ComposeX can use in order to lookup for resources.
It is very useful in case you plan to do cross-account lookup for shared resources or simply to render
your templates in a central CICD account.

Note

It will never modify the looked up object!

Warning

You can only lookup tagged resource on AWS.

Tip

Tags keys and values are case sensitive. At this stage, this does not support regexps.

Settings

The settings is the section where we can take shortcuts or wrap around settings which would otherwise be complex to
define. Sometimes, it simply is an easy way to use helpers which are configurable. For example, in the next interation
for the x-rds resources, we will allow to define the latest RDS engine and version that supports Serverless for aurora.

There is a set of settings which are going to be generic to all modules.

EnvNames

Multiple teams who would want to adopt ECS ComposeX might already have their own environment variable keys (or names)
for a common resource. For example, team A and team B can use the same SQS queue but they did not define a common name
for it, so team A calls it QueueA and team B calls it QUEUE_A.

With EnvNames, you can define a list of environment variables that will all share the same value, simply have a different
name.

Hint

No need to add the name of the resource as defined in the docker compose file, this will always be added by default.

Subnets

Example of override for RDS

x-rds:
 dbA:
 Settings:
 Subnets: AppSubnets

This parameter allows you to override which subnets should be used for the resource to be deployed to.
It applies to that resource only so if you had for example, multiple RDS instances, default behaviour is observed for all
resources that do not have this override.

Note

This only applies to services using TCP, so
* x-rds
* x-docdb
* x-elasticache

Note

For ECS services to be deployed into different subnets, refer to networks

Services

This is a list of object, with two keys: name, access. The name points to the service as defined in the docker compose
file.

Warning

This is case sensitive and so the name of the service in the list must be the same name as the service defined.

Note

At this point in time, each x- section has its own pre-defined IAM permissions for services that support IAM access
to the resources. In a future version, I might add a configuration file to override that behaviour.

Refer to each x- resource syntax to see which access types are available.

x-dynamodb

Syntax reference

x-dynamodb:
 table-A:
 Properties: {}
 MacroParameters: {}
 Settings: {}
 Services: []

Properties

Refer to AWS CFN Dynamodb Documentation [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html]. We support all of the definition and test with the documentation examples.

Tables with GSI

Blog applications

version: '3.8'

x-dynamodb:
 tableA:
 Properties:
 AttributeDefinitions:
 - AttributeName: "Album"
 AttributeType: "S"
 - AttributeName: "Artist"
 AttributeType: "S"
 - AttributeName: "Sales"
 AttributeType: "N"
 - AttributeName: "NumberOfSongs"
 AttributeType: "N"
 KeySchema:
 - AttributeName: "Album"
 KeyType: "HASH"
 - AttributeName: "Artist"
 KeyType: "RANGE"
 ProvisionedThroughput:
 ReadCapacityUnits: "5"
 WriteCapacityUnits: "5"
 GlobalSecondaryIndexes:
 - IndexName: "myGSI"
 KeySchema:
 - AttributeName: "Sales"
 KeyType: "HASH"
 - AttributeName: "Artist"
 KeyType: "RANGE"
 Projection:
 NonKeyAttributes:
 - "Album"
 - "NumberOfSongs"
 ProjectionType: "INCLUDE"
 ProvisionedThroughput:
 ReadCapacityUnits: "5"
 WriteCapacityUnits: "5"
 - IndexName: "myGSI2"
 KeySchema:
 - AttributeName: "NumberOfSongs"
 KeyType: "HASH"
 - AttributeName: "Sales"
 KeyType: "RANGE"
 Projection:
 NonKeyAttributes:
 - "Album"
 - "Artist"
 ProjectionType: "INCLUDE"
 ProvisionedThroughput:
 ReadCapacityUnits: "5"
 WriteCapacityUnits: "5"
 LocalSecondaryIndexes:
 - IndexName: "myLSI"
 KeySchema:
 - AttributeName: "Album"
 KeyType: "HASH"
 - AttributeName: "Sales"
 KeyType: "RANGE"
 Projection:
 NonKeyAttributes:
 - "Artist"
 - "NumberOfSongs"
 ProjectionType: "INCLUDE"

 Services:
 - name: app03
 access: RW
 - name: app02
 access: RW
 - name: bignicefamily
 access: RO

Settings

See the Settings for more details.

Hint

Given DynamoDB is serverless (unless using DAX), there is no Subnets override.

Lookup

For more details, see the Lookup.

Lookup DynamoDB Table example

x-dynamodb:
 table-A:
 Lookup:
 Tags:
 - table-name: table123
 - owner: myself
 - costallocation: 123
 Services:
 - name: serviceA
 access: DynamoDBCrudPolicy

ECS Compose-X defined access names:

	RW : Allow read/write/delete on the table items

	RO: Allow read only actions on the table items

Some of the AWS SAM access:

	DynamoDBCrudPolicy [https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-crud-policy]

	DynamoDBReadPolicy [https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-read-policy]

	DynamoDBWritePolicy [https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html#dynamo-db-write-policy]

Services

Define services

Services:
 - name: serviceA
 access: RW
 - name: serviceB
 access: RO

x-rds

Syntax

x-rds:
 psql-dbA:
 Properties: {}
 MacroParameters: {}
 Settings: {}
 Services: []
 Lookup: {}

Properties

RDS clusters or instances need a lot of properties. In order to keep compatibility you can still provide all the properties
that the RDS Cluster or RDS Instance would need with the same definition as in AWS CloudFormation.

However, some settings will be replaced automatically (at least for the foreseeable future), such as the master username
and password. The reason for it is to allow to keep integration to your ECS Services as seamless as possible.

Using properties

When using Properties, you can use either the RDS Aurora Cluster [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html] properties or RDS Instances [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html] properties.
ECS ComposeX will attempt to automatically identify whether this is a DB Cluster or DB Instance properties set.
If successful, it will ingest all your properties, and explained earlier, interpolate a few with new ones created for you.

	MasterUsername [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-masterusername]

	MasterUserPassword [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-masteruserpassword]

	Security Groups [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html#cfn-rds-dbinstance-vpcsecuritygroups]

MacroParameters

MacroParameters for RDS allow you to set only very little settings / properties and let ECS ComposeX do the rest for you.

MacroParameters syntax

Engine: str
EngineVersion: str
UseServerless: bool
UseMultiAz: bool
ParametersGroup: {} # Properties for parameters group as per AWS CFN definition
Instances: [] # Only valid when creating a DBCluster, allows to define multiple DB Instances
RdsFeatures: {} # Custom settings to define AWS RDS AssociatedRoles
PermissionsBoundary: str # Allow you to define an IAM boundary policy that will be used for the RDS IAM role(s)

MacroParameters definitions example

Engine: aurora-postgresql # Same as AWS CFN Engine property
EngineVersion: 11.7 # Same as AWS CFN EngineVersion property
UseServerless: False
UseMultiAz: True
ParametersGroups:
 Description: Some description
 Family: aurora-postgresql-11.7
 Parameters: {}
Instances: []
RdsFeatures:
 - Name: s3Import
 Resources:
 - x-s3::bucket-01
 - arn:aws:s3:::bucket/path/allowed/*
 - bucket-name

PermissionsBoundary

Allows to define whether an IAM Policy boundary is required for the IAM roles that will be created around the RDS Cluster/Instance.

Hint

This value can be either a policy name or policy ARN. When a policy Name, the ARN is built based on your Account ID.

RdsFeatures

Syntax definition

RdsFeatures:
 - Name: <DB Engine feature name>
 - Resources: [<str>]

The RDS Features is a wrapper to automatically define which RDS Features, supported by the Engine family, you might
want to enable. For these features, which require an IAM role, it will create a new IAM role specifically linked to
RDS and grant permissions based on the what the feature requires.

If you had set AssociatedRoles already in the permissions, then each FeatureName you have already defined that you
might re-define in RdsFeatures will be skipped. If you wish to use RdsFeatures then remove that feature from the
AssociateRoles definition.

Attention

This was primarily developed to allow feature request #375 so at the moment it only supports s3Import and s3Export.

Example with different bucket names syntax

x-rds:
 dbB:
 Properties: {}
 MacroParameters:
 PermissionsBoundary: policy-name
 RdsFeatures:
 - Name: s3Import
 Resources:
 - x-s3::bucket-01
 - arn:aws:s3:::sacrificial-lamb/folder/*
 - bucket-name
 - Name: s3Export
 Resources:
 - x-s3::bucket-01
 - arn:aws:s3:::sacrificial-lamb/folder/*
 - bucket-name

Hint

You can reference a S3 bucket defined in x-s3. This supports S3 buckets created and referenced via Lookup

Services

At this point in time, there is no plan to deploy as part of ECS ComposeX a lambda function that would connect to the DB
and create a DB/schema specifically for the microservice, as would this lambda function [https://github.com/lambda-my-aws/rds-auth-helper] do.

The syntax for listing the services remains the same as the other x- resources but the access type won’t be respected.

Access types

Warning

The access key value won’t be respected at this stage. This is required to keep compatibility with other modules.

Settings

Supported Settings

EnvNames: [<str>] # List of Environment Variable names to use for exposure to container

Lookup

The lookup allows you to find your cluster or db instance and also the Secret associated with them to allow ECS Services
to get access to these.

It will also find the DB security group and add an ingress rule.

x-rds:
 dba:
 Lookup:
 cluster:
 Name: cluster-identifier
 Tags:
 - sometag: value
 instance:
 Name: DB Instance Id
 Tags:
 - sometag: value
 secret:
 Tags:
 - sometag: value
 Name: secret/in/secretsmanager

When using AWS RDS Aurora, you should be specifying the cluster, otherwise the instance for “traditional” RDS instances.

Defaults

Credentials

Aurora and traditional RDS Databases support both Username/Password generic authentication. Due to the wide adoption of
that authentication mechanism, all RDS Dbs will come with a username/password, auto generated and stored in AWS Secrets Manager.

Hint

We do plan to allow a tick button to enable Aurora authentication with IAM, however have not received a Feature Request
for it.

AWS Secrets Manager integrates very nicely to AWS RDS. This has no intention to implement the rotation system at this
point in time, however, it will generate the password for the database and expose it securely to the microservices which
can via environment variables fetch

	DB Endpoint

	DB username

	DB Password

	DB Port

Examples

New DB Creation

x-rds:
 dbname:
 Properties:
 Engine: aurora-mysql
 EngineVersion: 5.7.12
 Services:
 - name: app01
 access: RW

Existing Cluster DB Lookup

x-rds:
 existing-cluster-dbA:
 Lookup:
 cluster:
 Tags:
 - key: value
 secret:
 Tags:
 - key: value

Hint

The DB Family group will be found automatically and the setting will allow creation of a
new RDS Parameter group for the Cluster / DB Instance.

x-docdb

Syntax

x-docdb:
 docdb-01:
 Properties: {}
 Settings: {}
 Services: []
 Lookup: {}
 MacroParameters: {}

Tip

For production workloads, to avoid any CFN deadlock situations, I recommend you generate the CFN templates for docdb,
and deploy the stacks separately. Using Lookup you can use existing DocDB clusters with your new services.

Properties

DocDB Cluster is rather very simple in its configuration. There aren’t 200+ combinations of EngineName and Engine Version
as for RDS, make life very easy.

However you can copy-paste all the properties you would find in the DocDB Cluster properties [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbcluster.html], some properties will be
ignored in order to keep the automation going:

	
	MasterUsername and MasterUserPassword
	These two will be auto generated and stored in secrets manager. The services linked to it will be granted GetSecretValue to it.

	
	VpcSecurityGroupIds
	The security group will be generated for the DB specifically and allow services listed only.

	
	AvailabilityZones
	Under trial, but not sure given that we give a Subnet Group why one would also define the AZs and it might conflict.

	
	DBClusterIdentifier
	As usual, named resources make for a nightmare to rename etc. Instead, there will be a Name tag associated with your Cluster.

	
	DBSubnetGroupName
	Equally gets created only. For now.

	
	SnapshotIdentifier
	Untested - 2020-11-13 - will support it later.

MacroParameters

These parameters will allow you to define extra parameters to define your cluster successfully.

Instances: []
DBClusterParameterGroup: {} # AWS DocDB::DBClusterParameterGroup properties

Instances

List of DocDB instances. The aspiration is to follow the same syntax as the DocDB Instance [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbinstance.html].

Note

Not all Properties are respected, instead, they follow logically the attachment to the DocDB Cluster.

Instances:
 - DBInstanceClass: <db instance type>
 PreferredMaintenanceWindow: <window definition>
 AutoMinorVersionUpgrade: bool

Hint

If you do not define an instance, ECS ComposeX automatically creates a new one with a single node of type db.t3.medium

DBClusterParameterGroup

Allows you to create on-the-fly parameter groups to tune your DocDB cluster. Refer to DocDB DBClusterParameterGroup [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-docdb-dbclusterparametergroup.html]
for more details.

parameter groups example

Description: "description"
Family: "docdb3.6"
Name: "sampleParameterGroup"
Parameters:
 audit_logs: "disabled"
 tls: "enabled"
 ttl_monitor: "enabled"

Services

The syntax for listing the services remains the same as the other x- resources.

Services:
 - name: <service/family name>
 access: <str>

Access types

Warning

The access key value do not have an effect at this stage.

Settings

The only setting for DocumentDB is EnvNames as for every other resources.

Hint

Given that the DB Secret attachment populates host, port etc., we expose as env vars the Secret associated to the DB,
not the DB itself.

Lookup

Lookup for Document DB is available!

Warning

For some reason the group resource tag API returns two different clusters even though they are the same one.
Make sure to specify the Name along with Tags until we figure an alternative solution.
Sorry for the inconvenience.

Credentials

The credentials strucutre remains the same as for RDS SQL versions

DocumentDB secret structure after attachment

{
 "dbClusterIdentifier": "<str>",
 "password": "<str>",
 "engine": "<str>",
 "port": "<int>",
 "host": "<str>",
 "username": "<str>"
}

Examples

Sample to crate two DBs with different instances configuration

DOCDB Simple use-case. Creating new DBs

x-docdb:
 docdbA:
 Properties: {}
 Settings:
 EnvNames:
 - DOCDB_A
 Services:
 - name: app03
 access: RW

 docdbB:
 Properties: {}
 Settings:
 EnvNames:
 - DOCDB_B
 Services:
 - name: app03
 access: RW
 MacroParameters:
 Instances:
 - DBInstanceClass: db.r5.large
 - DBInstanceClass: db.r5.xlarge
 AutoMinorVersionUpgrade: True

 docdbC:
 Properties:
 BackupRetentionPeriod: 7
 DBSubnetGroupName: String
 DeletionProtection: False
 EngineVersion: 4.0.0
 StorageEncrypted: True
 Tags:
 - Key: Name
 Value: docdb_C
 Services:
 - name: app03
 access: RW
 MacroParameters:
 Instances:
 - DBInstanceClass: db.r5.large
 - DBInstanceClass: db.t3.medium
 AutoMinorVersionUpgrade: True
 DBClusterParameterGroup:
 Description: "Some description"
 Family: "docdb4.0"
 Name: "sampleParameterGroup"
 Parameters:
 audit_logs: "disabled"
 tls: "disabled"
 ttl_monitor: "enabled"

Create a DocDB and import an existing one.

DOCDB Simple use-case. Creating new DBs

x-docdb:
 docdbA:
 Properties: {}
 Settings:
 EnvNames:
 - DOCDB_A
 Services:
 - name: app03
 access: RW

 docdbB:
 Settings:
 EnvNames:
 - DOCDB_A
 Services:
 - name: app03
 access: RW
 Lookup:
 cluster:
 Name: docdbb-purmjgtgvyqr
 Tags:
 - CreatedByComposeX: "true"
 - Name: docdb.docdbB
 secret:
 Tags:
 - aws:cloudformation:logical-id: docdbBSecret

x-elastic_cache

syntax reference

Properties: {} # AWS CacheCluster or ReplicationGroup properties
MacroParameters: {} # Shortcut parameters to get going quickly
Settings: {} # Generic settings supported by all resources
Services: [] # List of services that will get automatically access to the resource.
Lookup: {} # Lookup definition to find existing Cache or ReplicationGroup.

Hint

ECS ComposeX will always create a new SecurityGroup for a new resource to ensure the services can get access by
setting EC2 Security Ingress rules.

Properties

This allows you to define all the properties for either the AWS CacheCluster [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html] or AWS Replication Group [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticache-replicationgroup.html] resource as
part of the AWS ElasticCache family.

ECS ComposeX will automatically detect which of the two resource it is, based on the properties you will define.

Note

ECS ComposeX evaluates first for CacheCluster, so you might need to add an extra different parameter for ReplicationGroup
to be detected appropriately.

MacroParameters

This allows you to define a very few of the AWS CacheCluster [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html] resource if you do not want to define the Properties
and / or extra resources that are common to both the ReplicationGroup and CacheCluster.

Short syntax for properties to create a new CacheCluster

Engine: "redis|memcached" # The engine, required.
EngineVersion: <engine_version> # The engine version, required
CacheNodeType: <cache_node type> # Optionally, define the CacheNodeType, defaults to cache.t3.small
NumCacheNodes: <N> # Optionally, define the NumCacheNodes, defaults to 1
ParameterGroup: {} # Optioanlly, define a new parameter group

ParameterGroup

This allows you to create a specific parameter group for the CacheCluster or ReplicationGroup.
It supports all of the properties you can set in the original AWS ParameterGroup [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-parameter-group.html] definition.

Hint

Your parameter group settings have to match the settings supported by the Engine. Refer to Engine Parameters guide [https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.html]
to see what the engine you have can support as settings.

Settings

See Settings

Services

Services:
 - name: <service name> # Service or Family name
 access: <ignored> # Generic property that has to be set, ignored for now.

List of services you want to grant access to the CacheCluster or ReplicationGroup to.
ECS ComposeX will automatically get the attributes of your cluster based on its type (Memcached/Redis/Redis ReplicationGroup),
and pass these on down to the service stack.

Most importantly, it will create the SecurityGroup Ingress rules to allow your service to have access to the Cluster Node
via the indicated SecurityGroup.

Hint

ECS ComposeX will not handle the Redis6.x RBAC access as this is a lot more involved than generating CFN templates etc.
This might come in a future version.

Lookup

This allows you to define via Tags the ElasticCache Cluster or ReplicationGroup that already exists and you want your services
to have access to.

It will automatically select the AWS Security Group associated with your cluster and put down the settings of your cluster into a
CloudFormation mapping to pass it onto the services.

Examples

ComposeX env file with ElasticCache definitions

x-elasticache:
 cache01:
 Properties:
 AutoMinorVersionUpgrade: 'true'
 Engine: memcached
 EngineVersion: 1.6.6
 CacheNodeType: cache.t3.small
 NumCacheNodes: 1
 Services:
 - name: app03
 access: RW

 cache-02:
 MacroParameters:
 Engine: redis
 EngineVersion: 6.x
 Services:
 - name: app03
 access: RW

 cache03:
 Properties:
 ReplicationGroupDescription: my description
 NumCacheClusters: '2'
 Engine: redis
 CacheNodeType: cache.m3.medium
 AutoMinorVersionUpgrade: 'true'
 AutomaticFailoverEnabled: 'true'
 CacheSubnetGroupName: subnetgroup
 EngineVersion: 6.x
 PreferredMaintenanceWindow: 'wed:09:25-wed:22:30'
 SnapshotRetentionLimit: '4'
 SnapshotWindow: '03:30-05:30'
 Services:
 - name: app02
 access: RW

x-s3

Create or use existing S3 buckets to use for your applications

Properties

For the properties, go to to AWS CFN S3 Definition [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket.html]

MacroParameters

Some use-cases require special adjustments. This is what this section is for.

	NameSeparator

	ExpandRegionToBucket

	ExpandAccountIdToBucket

NameSeparator

Default is - which separates the different parts of the bucket that you might have automatically
added via the other MacroParameters

As shown below, the separator between the bucket name and AWS::AccountId or AWS::Region is -. This parameter allows
you to define something else.

Note

I would recommend not more than 2 characters separator.

Warning

The separator must allow for DNS compliance [a-z0-9.-]

ExpandRegionToBucket

When definining the BucketName in properties, if wanted to, for uniqueness or readability, you can append to that string
the region id (which is DNS compliant) to the bucket name.

Properties:
 BucketName: abcd-01
Settings:
 ExpandRegionToBucket: True

Results into

!Sub abcd-01-${AWS::Region}

ExpandAccountIdToBucket

Similar to ExpandRegionToBucket, it will append the account ID (additional or instead of).

Properties:
 BucketName: abcd-01
Settings:
 ExpandRegionToBucket: True

Results into

!Sub 'abcd-01-${AWS::AccountId}'

Hint

If you set both ExpandAccountIdToBucket and ExpandRegionToBucket, you end up with

!Sub 'abcd-01-${AWS::Region}-${AWS::AccountId}'

Services

As for all other resource types, you can define the type of access you want based to the S3 buckets.
However, for buckets, this means distinguish the bucket and the objects resource.

permissions example

x-s3:
 bucketA:
 Properties: {}
 Settings: {}
 Services:
 - name: service-01
 access:
 objects: RW
 bucket: ListOnly

Lookup

Lookup is currently implemented for S3 buckets!

Hint

For S3, if the S3 bucket has a default KMS key encryption, the services will automatically be granted KMS default
EncryptDecrypt permissions in order to allow using the KMS key for objects manipulation.

IAM Permissions

For S3 buckets, the access types is expecting a object with objects and bucket to distinguish permissions for each.
If you indicate a string, the default permissions (bucket: ListOnly and objects: RW) will be applied.

Full access types policies definitions

{
 "objects": {
 "CRUD": {
 "Action": [
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject",
 "s3:GetObjectTagging",
 "s3:GetObjectVersionTagging",
 "s3:PutObjectTagging",
 "s3:PutObjectVersionTagging",
 "s3:DeleteObjectTagging",
 "s3:DeleteObjectVersionTagging",
 "s3:AbortMultipartUpload",
 "s3:PutObjectAcl"
],
 "Effect": "Allow"
 },
 "RW": {
 "Action": [
 "s3:GetObject*",
 "s3:PutObject*"
],
 "Effect": "Allow"
 },
 "StrictRW": {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow"
 },
 "StrictRWDelete": {
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Effect": "Allow"
 },
 "RWDelete": {
 "Action": [
 "s3:GetObject*",
 "s3:PutObject*",
 "s3:DeleteObject*"
],
 "Effect": "Allow"
 },
 "ReadOnly": {
 "Action": [
 "s3:GetObject*"
],
 "Effect": "Allow"
 },
 "StrictReadOnly": {
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow"
 },
 "WriteOnly": {
 "Action": [
 "s3:PutObject*"
],
 "Effect": "Allow"
 },
 "StrictWriteOnly": {
 "Action": [
 "s3:PutObject"
],
 "Effect": "Allow"
 }
 },
 "bucket": {
 "ListOnly": {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetBucketPublicAccessBlock"
]
 },
 "PowerUser": {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucket*",
 "s3:SetBucket*"
]
 }
 }
}

Examples

Create new S3 buckets

version: "3.8"

x-s3:
 bucket-01:
 Properties:
 BucketName: bucket-01
 AccessControl: BucketOwnerFullControl
 ObjectLockEnabled: True
 PublicAccessBlockConfiguration:
 BlockPublicAcls: True
 BlockPublicPolicy: True
 IgnorePublicAcls: True
 RestrictPublicBuckets: False
 AccelerateConfiguration:
 AccelerationStatus: Suspended
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: "aws:kms"
 KMSMasterKeyID: "aws/s3"
 VersioningConfiguration:
 Status: "Enabled"
 MacroParameters:
 ExpandRegionToBucket: True
 ExpandAccountIdToBucket: True
 Settings:
 EnvNames:
 - bucket01
 - BUCKET_ABCD-01
 Services:
 - name: app03
 access: RWObjects
 bucket-03:
 Properties:
 BucketName: bucket-03
 AccessControl: BucketOwnerFullControl
 ObjectLockEnabled: True
 PublicAccessBlockConfiguration:
 BlockPublicAcls: True
 BlockPublicPolicy: True
 IgnorePublicAcls: True
 RestrictPublicBuckets: False
 AccelerateConfiguration:
 AccelerationStatus: Suspended
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: AES256
 VersioningConfiguration:
 Status: "Enabled"

 Settings:
 ExpandRegionToBucket: True
 ExpandAccountIdToBucket: False
 EnvNames:
 - bucket01
 - BUCKET_ABCD-01
 Services:
 - name: app03
 access: RWObjects
 bucket-02:
 Properties: {}
 Settings:
 ExpandRegionToBucket: False
 ExpandAccountIdToBucket: False
 EnableEncryption: AES256
 EnableAcceleration: True
 EnvNames:
 - bucket01
 - BUCKET_ABCD-01
 Services:
 - name: app03
 access:
 bucket: ListOnly
 objects: RW

 bucket-04:
 Properties:
 BucketName: bucket-04
 Settings:
 NameSeparator: "."
 ExpandRegionToBucket: False
 ExpandAccountIdToBucket: False
 EnableEncryption: AES256
 EnableAcceleration: True
 EnvNames:
 - bucket01
 - BUCKET_ABCD-01
 Services:
 - name: app03
 access:
 bucket: ListOnly
 objects: RW

Lookup and use only existing buckets

version: "3.8"

x-s3:
 bucket-07:
 Lookup:
 Tags:
 - aws:cloudformation:logical-id: ArtifactsBucket
 - aws:cloudformation:stack-name: pipeline-shared-buckets
 Services:
 - name: app03
 access:
 bucket: PowerUser
 objects: RW

 bucket-08:
 Settings:
 EnvNames:
 - BUCKET03
 Lookup:
 Name: sacrificial-lamb
 Tags:
 - composex: "True"
 Services:
 - name: app03
 access:
 bucket: PowerUser
 objects: RW

Create new bucket with AWS CFN properties

version: "3.8"

x-s3:
 bucket-01:
 Properties:
 BucketName: bucket-01
 AccessControl: BucketOwnerFullControl
 AccelerateConfiguration:
 AccelerationStatus: Suspended
 ObjectLockEnabled: True
 PublicAccessBlockConfiguration:
 BlockPublicAcls: True
 BlockPublicPolicy: True
 IgnorePublicAcls: True
 RestrictPublicBuckets: False
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: "aws:kms"
 KMSMasterKeyID: "aws/s3"
 VersioningConfiguration:
 Status: "Enabled"
 MetricsConfigurations:
 - Id: EntireBucket
 LifecycleConfiguration:
 Rules:
 - Id: GlacierRule
 Prefix: glacier
 Status: Enabled
 ExpirationInDays: '365'
 Transitions:
 - TransitionInDays: '1'
 StorageClass: GLACIER
 CorsConfiguration:
 CorsRules:
 - AllowedHeaders:
 - '*'
 AllowedMethods:
 - GET
 AllowedOrigins:
 - '*'
 ExposedHeaders:
 - Date
 Id: myCORSRuleId1
 MaxAge: '3600'
 - AllowedHeaders:
 - x-amz-*
 AllowedMethods:
 - DELETE
 AllowedOrigins:
 - 'http://www.example.com'
 - 'http://www.example.net'
 ExposedHeaders:
 - Connection
 - Server
 - Date
 Id: myCORSRuleId2
 MaxAge: '1800'
 WebsiteConfiguration:
 IndexDocument: index.html
 ErrorDocument: error.html
 RoutingRules:
 - RoutingRuleCondition:
 HttpErrorCodeReturnedEquals: '404'
 KeyPrefixEquals: out1/
 RedirectRule:
 HostName: ec2-11-22-333-44.compute-1.amazonaws.com
 ReplaceKeyPrefixWith: report-404/
 NotificationConfiguration:
 TopicConfigurations:
 - Topic: 'arn:aws:sns:us-east-1:123456789012:TestTopic'
 Event: 's3:ReducedRedundancyLostObject'
 MacroParameters:
 ExpandRegionToBucket: True
 ExpandAccountIdToBucket: True
 Settings:
 EnvNames:
 - bucket01
 - BUCKET_ABCD-01
 Services:
 - name: app03
 access: RWObjects

x-efs

As described in the volumes documentation, in order to setup an AWS EFS Filesystem, you can
either use the ECS Plugin definition, which will let ECS Compose-X import and define default settings, or alternatively,
you can define your own settings using x-efs.

Attention

For more details around permissions and access to the filesystem, refer to Filesystem, Access Point and services access

Syntax reference

volumes:
 abcd:
 x-efs:
 Properties: {}
 MacroParameters: {}
 Settings: {}
 Lookup: {}
 Use: <str>

Hint

Even though x-efs is defined at the volumes level, at rendering time, a top level EFS stack will be created to contain
the various filesystems required to be shared access across services.

Properties

As usual, the Properties supported as equal to the properties you would define in native CloudFormation.
Refer to the AWS CFN EFS syntax reference [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-efs-filesystem.html] for more details.

MacroParameters

However, AWS EFS has evolved since and some very tidy and neat features have emerged since, such as the EFS Access Points.

As it is ECS Compose-X objective to abstract that complexity away from developers but retain the security to high standards,
we have implemented simple feature(s) to automatically enable using features such as IAM Authentication to further control access.

EnforceIamAuth

Enable IAM Auth restriction

volumes:
 abcd:
 x-efs:
 MacroParameters:
 EnforceIamAuth: <True|False>

The purpose of IAM Authentication is to allow applications to authenticate against an EFS Access Point which will allow
for further security configuration, such as, setting UID/GID to use, among others.

But primarily this will allow connection to the EFS using the Task IAM Role as a way to authenticate a specific application
which can then translate into specific files access permissions.

When using IAM Authentication, this also enforces to use TLS between the client and the server, for increased security.

By enabling this feature, an access point will be created specifically for your services in the task definition, along with
the filesystem.

Attention

To use that feature, it is highly recommend to use the EFS Mount Helper [https://docs.aws.amazon.com/efs/latest/ug/mounting-fs-mount-helper.html]

Settings

This might be one rare case where the generic EnvNames has no impact, given that the volume name is the only thing
that matters in this particular use-case. ECS Will automatically resolve the DNS name of the target in order to mount
the shared filesystem as a volume to the container.

Subnets

As for other services that require to be created in a VPC to be accessed (for EFS, via Mount Targets [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-efs-mounttarget.html]), you can
override the default behaviour (for EFS, defaults to the StorageSubnets).

Lookup

As usual, the Plug N’ Play aspect of ECS Compose-X to your existing infrastructure is a key concern, therefore, you
can also use ECS Compose-X to identify dynamically AWS EFS which already exists.

volumes:
 abcd:
 x-efs:
 Lookup:
 Tags: []
 RoleArn: <>

Use

If you did know your Filesystem ID in AWS EFS, and wanted to just pass it on as the value instead of using Lookup, you can,
either through use or through the original ECS Plugin definition.

ECS Plugin syntax

volumes:
 abcd:
 external: true
 name: fs-abcd1234

ECS ComposeX Syntax

volumes:
 abcd:
 x-efs:
 Use: fs-abcd1234

Examples

A full example using Bitnami Wordpress image (which requires users permissions etc. to be set) can be found in
GitHub [https://github.com/compose-x/wordpress-demo]

Filesystem, Access Point and services access

AWS EFS has a notion of Access Point, which are very well described in the docs and other blog articles on the AWS sites.
In a nutshell, they will allow you to control access to the Filesystem and “proxy” your access so that your services can
set use specific POSIX users and root folders to the filesystem

This comes in to be very important if you are using a shared EFS among multiple tenants (applications, services etc.) and
want to ensure separation for each but not have to spend hours configuring each service clients.

Access point per “container” within the task definition

In ECS Compose-X there is only so much that we can understand from the settings set at the volumes level.
Given ECS Compose-X tries to focus as much as possible on security, we have implemented the following:

	If your task definition only has 1 container definition, there is one volume created in the task level, used by containers

	
	If there is more than one container definition and you defined a different user property for the service, a new
	access point is created specifically for that container, added to the task definition.

Warning

Even with 1 access point per container in the task definition, the access remains at the task level for IAM permissions.

x-appmesh

	Syntax

	Properties

	MeshName

	MeshOwner

	EgressPolicy

	Settings

	nodes

	Syntax

	Examples

	routers

	Definition

	Syntax

	match

	Definition

	Syntax

	Example

	services

	Syntax

	Examples

	AWS AppMesh & AWS Cloud Map for services mesh & discovery

	Nodes

	Routers

	Services

	The other things ECS ComposeX takes care of for you

Warning

This module is still under development and we would love to get any feedback on the syntax and how to make it easier.

Syntax

x-appmesh:
 Properties:
 MeshName: str
 MeshOwner: str
 EgressPolicy: str
 Settings:
 Nodes:
 - <node>
 Routers:
 - <router>
 Services:
 - <service>

The properties for the mesh are very straight forward. Even though, the wish with ECS ComposeX is to keep the Properties
the same as the ones defined in CFN as much as possible, for AWS AppMesh, given the simplicity of the properties,
we are going with somewhat custom properties, mostly to allow for more features integration down the line.

Warning

There is only one mesh that will be either created or used to deploy the services into.

x-appmesh:
 Properties: {}
 Settings: {}

Properties

MeshName

This is the name of the mesh. However, if you do not specify the MeshOwner, then the name is ignored and the root
stack name is used.

The MeshName is going to be used if you specify the MeshOwner, in case you are deploying into a Shared Mesh.

AllowedPattern: ^[a-zA-Z0-9+]+$

MeshOwner

The MeshOwner as described above, doesn’t need to be specified, if you are creating your Nodes, Routers and Services
(virtual ones) into a Mesh shared with you from another account.

AllowedPattern: [0-9]{12}

EgressPolicy

The mesh aims to allow services, nodes to communicate to each other only through the mesh. So by default, ECS ComposeX
sets the policy to DROP_ALL. Meaning, no traffic out of the nodes will be allowed if not to a defined VirtualService
in the mesh.

For troubleshooting and otherwise for your use-case, you might want to allow any traffic to get out of the node anyway.
If so, simply change the policy to ALLOW_ALL

AllowedValues: DROP_ALL, ALLOW_ALL

Settings

The settings section is where we are going to define how our services defined in Docker compose are going to integrate
to the mesh.

nodes

Syntax

Name: str # <family name>
Procotol str
Backends:
 - <service_name> # Only services can be defined as backend

Examples

This section represents the nodes. The nodes listed here must be either a service as listed in docker-compose or a
family name.

Nodes:
 - Name: app01
 Procotol Http
 - Name: app02
 Procotol Tcp
 Backends:
 - service-abcd

routers

Definition

Routers as mentioned in the module description, are here to allow developers to define how packets should be routed
from one place to another.

For TCP ones, one can only really set timeout settings, in addition to TLS etc. However for Http, Http2 and gRPC it
allows you to define further more rules. The example below shows how a request to the router on path / it should
send requests with the POST method to app02, but requests with the GET method to app01.

Syntax

Name: str
Listener
 Procotol str
 port: int
Routes:
 Http:
 - <match>

match

This is simplistic version of the AWS Route Match specifications : HTTP Route, TCP Route

Definition

The match allows to define how to route packets to backend nodes

Syntax

Match:
 Prefix: str
Method: str
Scheme:: str
Nodes:
 - <node_name>

Example

Routers:
 - Name: Httprouter
 Listener
 Procotol Http
 port: 8080
 Routes:
 Http:
 - Match:
 Prefix: /
 Method: GET
 Scheme:: Http
 Nodes:
 - app01
 - Match:
 Prefix: /
 Method: POST
 Nodes:
 - app02

services

The VirtualServices are what acts as backends to nodes, and as receiver for nodes and routers.
The Virtual Services can use either a Node or a Router as the location to route the traffic to.

Syntax

Services:
 - Node: <node_name>
 Name: str
 - Router: <router_name>
 Name: str

Services:
 - Name: service-xyz
 Router: Httprouter
 - Name: service-xyz
 Node: app03

Examples

Simple mesh definition for new mesh of Services

x-appmesh:
 Properties: {}
 Settings:
 Nodes:
 - Name: app03
 Protocol: Tcp
 - Name: youtoo
 Protocol: Http
 - Name: bignicefamily
 Protocol: Http
 Backends:
 - dateteller # Points to the dateteller Service, not Router!
 Routers:
 - Name: dateteller
 Listener:
 Port: 5000
 Protocol: Http
 Routes:
 Http:
 - Match:
 Prefix: /date
 Method: GET
 Scheme: Http
 Nodes:
 - Name: youtoo
 Weight: 1
 - Name: datetellertcp
 Listener:
 Port: 5000
 Protocol: Tcp
 Routes:
 Tcp:
 - Nodes:
 - Name: app03
 Weight: 1
 Services:
 - Name: api
 Node: bignicefamily
 - Name: dateteller
 Router: dateteller

AWS AppMesh & AWS Cloud Map for services mesh & discovery

AWS AppMesh is a service mesh which takes care of routing your services packets logically among the different nodes.
What this allows you to do, it to explicitly declare which services have access to others, either on http, tcp or gRPC.

See also

ComposeX x-appmesh syntax reference

Note

For HTTP, it supports both http2 and http.

There are a lot more features to know about, so I would recommend to head to the AWS Appmesh official documentation [https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html].

Warning

At the time of working on this feature, mutualTLS is not available, for lack of $$ to use AWS ACM CA and do the dev
work.

Warning

By default in ECS ComposeX, the EGRESS policy for nodes it to DROP_ALL so that only explicitly allowed traffic can
go across the mesh, in/out the services.

Nodes

The nodes are a logical construct to indicate an endpoint. With ECS ComposeX, it will either be

	a service defined and deployed in ECS

	a database

	any DNS discoverable target.

When you enable AWS AppMesh in ECS ComposeX, it will automatically add all the necessary resources for your ECS task
to work correctly:

	envoy container

	update task definition with proxy configuration

	add IAM permissions for envoy to discover services and the mesh settings.

Routers

Routers are logical endpoints that apply the logic you define into routes. For TCP routers, it mostly is about defining
TCP settings, such as timeouts.

For HTTP and gRPC however, it is far more advanced. You can define routes based on path, method etc.
I also can perform healthcheck for you, to evaluate the nodes health.
It effectively is a virtual ALB listener with a long set of rules.

Note

From experimenting and testing however, you cannot mix routes protocols within the same router.

Services

The virtual services are once again, a logical pointer to a resource. That resource will either be a Node or a Router.
But again, it is aimed to be a virtual pointer, therefore, you do not need to call your virtual service with the same
name as one of the services defined in the compose services.

What does that mean?

In essence, when you define a VirtualService as the backend of a virtual node, this means this node and its services
will be granted access to the nodes of the VirtualService itself. But, you might have called your services clock
and watch, and yet the virtual service will be called time.

Problem: when trying to connect to the endpoint time, your application won’t be able to resolve time.
Solution: ECS ComposeX will create a virtual service in the same AWS CloudMap as where the ECS Services are registered,
and create a fake instance of it, for which the IPv4 address will be 169.254.255.254
How does it work?: your microservice in ECS will try to resolve time. The DNS response will be an IP address, here,
169.254.255.254. Which obviously does not exist in a VPC (see RFC 3927 [https://tools.ietf.org/html/rfc3927] for more details) but, it will allow your
application to establish the connection. The connection is intercepted by the envoy proxy container, which internally
figures out, where to connect and how. It will then take your package, and send it across to the destination, to the
right IP address. Which is why resolving the IP in DNS is important, but the value of the record is not.

The other things ECS ComposeX takes care of for you

In addition to configuring the ECS Task definition appropriately etc, ECS ComposeX also will take care of the security
groups opening between the Virtual Nodes, and to other backends.

Yes, a mesh with DROP_ALL will ensure that communication between nodes only happens if explicitly allowed, but this
does not mean we should not also keep the underlying network in check.

The security group inbound rule defined is from the source node to the target node(s), allowing all traffic for now
between the nodes.

Note

For troubleshooting, you can use the ClusterWide Security Group which is attached to all containers deployed with
ECS ComposeX, and allow all traffic within the security group to allow your ECS Services to communicate.

x-dns

Allows you to indicate what the DNS settings shall be for the deployment of your containers.

Syntax

Private Namespace definition (Uses AWS CloudMap)

PrivateNamespace:
 Name: str # TLD to use for the deployment.
 Lookup: str # Domain name to find in CloudMap
 Use: str # Expects the CloudMap ns- namespace ID

Warning

This domain will be associated with the VPC Route53 “database”. If another Namespace using the same domain
name already is associated with the VPC, this will fail.

Public DNS Zone using Route53.

PublicZone:
 Name: str # TLD to use for the deployment.
 Lookup: str # Domain name to find in CloudMap
 Use: str # Expects the CloudMap Z[A-Z0-9]+- Hosted Zone Id

Attention

For ACM DNS Validation and other validations to work, the zone must be able to be resolved.

Examples

Private definition only

x-dns:
 PrivateNamespace:
 Name: mycluster.lan

Public Zone and private zone

x-dns:
 PrivateNamespace:
 Name: mycluster.lan
 Use: ns-abcd012344
 PublicZone:
 Name: public-domain.net
 Use: Z0123456ABCD

x-elbv2

This module allows you to define Application and Network Load-Balancers (Gateways not tested yet), and define which
of your services should receive traffic, and add settings such as health check etc.

Syntax

x-elbv2:
 lbA:
 Properties: {}
 MacroParameters: {}
 Services: []
 - name: str
 protocol: str
 port: int
 healthcheck: str
 Listeners: []

Properties

For this particular resource, the only attributes that match the CFN definition that ECS Compose-X will import are

	Scheme [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-scheme]

	Type [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-type]

	LoadBalancerAttributes [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-loadbalancerattributes]

All other settings are automatically generated for you based on the network and security definitions you have defined in
the services and targets section.

Subnets associations can be overridden in the Settings.Subnets section. See Subnets for more details.

Hint

For Application Load Balancers, a new security group will be created automatically.
Subnets are selected automatically based on the scheme you indicated.
If selected a public NLB, the EIP addressed will automatically be provisioned too.

MacroParameters

ELBv2 Macro Parameters

timeout_seconds: int
desync_mitigation_mode: str
drop_invalid_header_fields: bool
http2: bool
cross_zone: bool
Ingress: {}

Ingress

Similar syntax as for ECS Services Ingress, allow you to define Ingress.

Tip

When using NLB, ingress must be defined at the service level, as NLB do not have a SecurityGroup

Ingress Syntax

Ingress:
 ExtSources: []
 AwsSources: []

ExtSources syntax

ExtSources:
 - Name: str (if any non alphanumeric character set, will be deleted)
 Description: str
 IPv4: str

AwsSources syntax

AwsSources:
 - Type: SecurityGroup|PrefixList (str)
 Id: sg-[a-z0-9]+|pl-[a-z0-9]+
 Lookup: {}

Tip

You can use either Id or Lookup to identify the SecurityGroups.
Check out the Lookup syntax reference

Other attribute shortcuts

These settings are just a shorter notation for the LB Attributes [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html#cfn-elasticloadbalancingv2-loadbalancer-loadbalancerattributes]

	Shorthand

	AttributeName

	LB Type

	timeout_seconds

	idle_timeout.timeout_seconds

	ALB

	desync_mitigation_mode

	routing.http.desync_mitigation_mode

	ALB

	drop_invalid_header_fields

	routing.http.drop_invalid_header_fields.enabled

	ALB

	http2

	routing.http2.enabled

	ALB

	cross_zone

	load_balancing.cross_zone.enabled

	NLB

Services

This follows the regular pattern of having the name of the service and access, only this time in a slightly different format.
The services represent the Target Group [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html] definition of your service. Once again, in an attempt to keep things simple,
you do not have to indicate all of the settings exactly as CFN does.

The Targets will automatically be pointing towards the ECS Service tasks.

name

Given that you can now re-use one of the service in the docker-compose file multiple times for multiple ECS Services
in multiple Task definitions, and ECS to ELBv2 supports to route traffic to a specific container in the task definition,
you have to indicate the service name in the following format

name: <family_name>:<service_name>
name: youtoo:app01
name: app03:app03

Hint

If you service is not associated to a family via deploy labels, the family name is the same as the service name.

protocol

The Target Group protocol

port

The port of the target to send the traffic to

Hint

This port is the port used by the Target Group to send traffic to, which can be different to your healthcheck port.

healthcheck

The healthcheck properties can be defined in the same fashion as defined in the Target Group [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html] definition.
However, it is also possible to shorten the syntax into a simple string

(port:protocol)(:healthy_count:unhealthy_count:intervals:timeout)?(:path:http_codes)?

Note

The last part, for path and HTTP codes, is only valid for ALB

Listeners

You can define in a very simple way your Listener definition [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html] and cross-reference other resources, here, the services
and ACM certificates you might be creating.

It has its own set of properties, custom to ECS ComposeX.

The following properties are identical to the original CFN definition.

	Port [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-port]

	Protocol [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-protocol]

	SslPolicy [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-sslpolicy]

	Certificates [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html#cfn-elasticloadbalancingv2-listener-certificates]

Hint

For certificates, you can also use x-acm to refer to an ACM certificate you are creating with this stack.
It will automatically import the Certificate ARN and map it once created.

Hint

You can re-use the same ACM certificate defined in x-acm for multiple listeners. Make sure to have all the Alt. Subjects you need!

Warning

The certificate ARN must be valid when set, however, we are not checking that it actually exists.(yet)

Target Groups

List of targets to send the requests to. These are equivalent to ELBv2::TargetGroup

name: <service_name> ie. app03:app03
access: <domain name and or path> ie. domain.net/path
cognito_auth: AuthenticateCognitoConfig

This represents the targets and simultaneously the Listener Rules to apply so that you can point to multiple services
at once and implement these rules.

name

The name of the family and service in that family to send the requests to.

access

Allows you to define the conditions based on the path or domain name (or combination of both) that should be in place
to forward requests.

If you only define the domain name, any path in that domain will be what’s matched.

AuthenticateCognitoConfig

Defines the AuthenticateCognitoConfig [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig.html#cfn-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig-userpoolarn] requirement condition / action

AuthenticateOidcConfig

Similar to AuthenticateCognitoConfig [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig.html#cfn-elasticloadbalancingv2-listenerrule-authenticatecognitoconfig-userpoolarn] but for OIDC providers. This allows to respect all the AuthenticateOidcConfig [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticloadbalancingv2-listenerrule-authenticateoidcconfig.html]
Properties as per CFN definition.

Tip

We highly recommend that you store the OIDC details into a secret in secrets manager!

Hint

For both AuthenticateCognitoConfig and AuthenticateOidcConfig, the rules defined in access will be set to come after
the authenticate action.

Examples

ELBv2 creation for services

x-dns:
 PublicZone:
 Name: lambda-my-aws.io
 Use: ZABCDEFGHIS0123

x-acm:
 public-acm-01:
 Properties:
 DomainName: test.lambda-my-aws.io
 DomainValidationOptions:
 - HostedZoneId: ZABCDEFGHIS0123
 DomainName: test.lambda-my-aws.io
 SubjectAlternativeNames:
 - anothertest.lambda-my-aws.io
 - yet.another.test.lambda-my-aws.io
 ValidationMethod: DNS

x-elbv2:
 lbA:
 Properties:
 Type: application
 MacroParameters:
 S3Logs: bucket:/prefix
 timeout_seconds: 60
 desync_mitigation_mode: defensive
 drop_invalid_header_fields: True
 http2: False
 cross_zone: True
 Ingress:
 ExtSources:
 - Ipv4: "0.0.0.0/0"
 Description: ANY
 - Ipv4: "1.1.1.1/32"
 Description: CLOUDFLARE
 Name: CLOUDFLARE
 Listeners:
 - Port: 80
 Protocol: HTTP
 DefaultActions:
 - Redirect: HTTP_TO_HTTPS
 - Port: 443
 Protocol: HTTP
 Certificates:
 - x-acm: public-acm-01
 Targets:
 - name: bignicefamily:app01
 access: /somewhere
 - Port: 8080
 Protocol: HTTP
 Certificates:
 - x-acm: public-acm-01
 - CertificateArn: arn:aws:acm:eu-west-1:012345678912:certificate/102402a1-d0d2-46ff-b26b-33008f072ee8
 Targets:
 - name: bignicefamily:rproxy
 access: /
 - name: youtoo:rproxy
 access: /stupid
 - name: bignicefamily:app01
 access: thereisnospoon.ews-network.net:8080/abcd/test.html

 Services:
 - name: bignicefamily:rproxy
 port: 80
 healthcheck: 5000:HTTP:/healthcheck:200,201
 - name: bignicefamily:app01
 port: 5000
 healthcheck: 5000:HTTP:/path/to/healthcheck:200,201
 - name: youtoo:rproxy
 port: 80
 healthcheck: 5000:HTTP:5:2:15:3:/ping.This.Method:200,201

 lbC:
 Properties:
 Scheme: internet-facing
 Type: network
 MacroParameters:
 cross_zone: True
 Settings: {}
 Listeners:
 - Port: 8080
 Protocol: TCP
 Targets:
 - name: app03:app03
 access: /
 - Port: 8081
 Protocol: TCP
 Certificates:
 - x-acm: public-acm-01
 Targets:
 - name: app03:app03
 access: /
 Services:
 - name: app03:app03
 port: 5000
 healthcheck: 5000:TCP:7:2:15:5
 protocol: TCP

ELBv2 with

x-elbv2:
 authLb:
 Properties:
 Scheme: internet-facing
 Type: application
 Settings: {}
 Listeners:
 - Port: 8080
 Protocol: HTTP
 Targets:
 - name: app03:app03
 access: /
 - Port: 8081
 Protocol: HTTP
 Targets:
 - name: app03:app03
 access: /
 AuthenticateOidcConfig:
 Issuer: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:Issuer}}"
 AuthorizationEndpoint: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:AuthorizationEndpoint}}"
 TokenEndpoint: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:TokenEndpoint}}"
 UserInfoEndpoint: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:UserInfoEndpoint}}"
 ClientId: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:ClientId}}"
 ClientSecret: "{{resolve:secretsmanager:/oidc/azuread/app001:SecretString:ClientSecret}}"
 SessionCookieName: "my-cookie"
 SessionTimeout: 3600
 Scope: "email"
 AuthenticationRequestExtraParams":
 display": "page"
 prompt": "login"
 OnUnauthenticatedRequest: "deny"
 Services:
 - name: app03:app03
 port: 5000
 healthcheck: 5000:HTTP:7:2:15:5
 protocol: HTTP

x-acm

This module to allow people to create ACM certificates, auto-validate these with their DNS registration, and front their applications with HTTPS.

Hint

Recently got supported by CloudFormation to natively add the CNAME entry to your Route53 DNS record as the certificate
is created, removing the manual validation process.

Syntax

x-acm:
 certificate-01:
 Properties: {} # AWS CFN Properties
 MacroParameters: {} # ComposeX Macro parameters for ACM

Warning

You cannot be creating your public DNS Zone and validating it at the same time, simply because the NS servers
of you new Public Zone are not registered in your DNS registra. Therefore, DNS validation would never work.
Make sure that if you are creating a new DNS PublicZone, you will be able to use it!

Properties

The properties will be supported exactly like in the native AWS ACM Properties [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-certificatemanager-certificate.html]

Hint

If you defined multiple SubjectAlternativeNames names, they will be auto-added to the validation list and use
the same ZoneId, so you do not need to list them all in DomainValidationOptions [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-certificatemanager-certificate.html#cfn-certificatemanager-certificate-domainvalidationoptions]

MacroParameters

In the aspiration of making things easy, you can now simply define very straight forward settings to define your certificate.
This automatically creates the full ACM Certificate definition, and uses DNS validation.

DomainNames:
 - domain.tld
 - sub.domain.tld
HostedZoneId: ZoneID

DomainNames

List of the domain names you want to create the ACM Certificate for.

Hint

The first domain name will be used for the CN, and the following ones will be used for SubjectAlternative names

HostedZoneId

If you wish to override the x-dns/PublicZone settings you can set that here.

Note

That HostedZone ID will be used for all of the Domain Validation.

Services

No need to indicate services to assign the ACM certificate to. Refer to x-elbv2 for mapping
to ALB/NLB.

Example

x-acm:
 public-acm-01:
 Properties:
 DomainName: test.lambda-my-aws.io
 DomainValidationOptions:
 - HostedZoneId: ZABCDEFGHIS0123
 DomainName: test.lambda-my-aws.io
 SubjectAlternativeNames:
 - anothertest.lambda-my-aws.io
 - yet.another.test.lambda-my-aws.io
 ValidationMethod: DNS

Hint

If you need to specify x-dns in the template and provide the HostedZoneId which will be used there.
DNS Reference: x-dns

x-kinesis

This module helps you create new Kinesis Data Streams supporting all the AWS CFN properties and link these streams to your
services.

Syntax reference

x-kinesis Syntax reference

x-kinesis:
 stream:
 Properties: {} # AWS Kinesis CFN definition
 Settings: {}
 MacroParameters: {}
 Services: []

Properties

The Properties are the AWS CFN definition for AWS Kinesis streams [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-stream.html].

MacroParameters

No specific MacroParameters for Kinesis data streams. Given the AWS definition is very straightforward, just define the properties.
The only truly required property is the ShardCount [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-stream.html#cfn-kinesis-stream-shardcount]

Settings

The settings are as usual, allow you to define EnvNames

EnvNames

List of String that allow you to define multiple environment names for the stream to be exposed to your service.
Value for these is the AWS Kinesis Stream name (Default value returned by Fn::Ref

Services

As per the generic Services definition, we have a list of object, name and access, which define how the service can access the stream.

For AWS Kinesis streams, we have the following permissions.

	Producer

	Consumer

	PowerUser

Examples

Services definition example

services: [serviceA, serviceB]

x-kinesis:
 streamA:
 Properties:
 ShardCount: 2
 Services:
 - name: serviceA
 access: Producer
 - name: serviceB
 access: Consumer

IAM permissions

IAM permissions pre-defined for your services.

{
 "Consumer": {
 "Effect": "Allow",
 "Action": [
 "kinesis:Get*",
 "kinesis:DescribeStreamSummary"
]
 },
 "Producer": {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
]
 },
 "PowerUser": {
 "Effect": "Allow",
 "NotAction": [
 "kinesis:CreateStream",
 "kinesis:DeleteStream"
]
 }
}

x-sqs

Define your AWS SQS Queues and service scaling based on messages queue depth

Syntax

SNS Syntax Reference

x-sns:
 QueueA:
 Properties: {}
 Settings: {}
 Services: []

Properties

Mandatory Properties

SQS does not require any properties to be set in order to create the queue. No settings are mandatory.

Special properties

It is possible to define Dead Letter Queues for SQS messages (DLQ). It is possible to easily define this in ECS ComposeX
simply by referring to the name of the queue, deployed in this same deployment.

Warning

It won’t be possible to import a queue ARN at this time in ECS ComposeX that exists outside of the stack today.

Services

Similar to all other modules, we have a list of dictionaries, with two keys of interest:

	name: the name of the service as defined in services

	access: the type of access to the resource.

	scaling: Allow to define the scaling behaviour of the service based on SQS Approximate Messages Visible.

IAM Permissions

	RO - read only

	RWMessages - read/write messages on the queue

	RWPermissions - read/write messages and grants access to modify some queue attributes

Tip

IAM policies, are defined in sqs/sqs_perms.json

Hint

You can also use AWS SAM Permissions as defined in AWS Documentation [https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-template-list.html]

SAM Policy Example

services:
 serviceA: {}
x-sqs:
 QueueA:
 Services:
 - name: serviceA
 access: SQSPollerPolicy

Lookup

See Lookup for more details about Lookup.

x-sqs:
 QueueA:
 Lookup:
 Tags:
 - Name: queue-a-123
 - owner: app01

Scaling

You can now defined StepScaling on the ECS Service based on the number of messages in the queue!

Scaling Syntax

scaling:
 steps:
 - lower_bound: int
 upper_bound: int
 count: int
 scaling_in_cooldown: int
 scaling_out_cooldown: int

Tip

You can define scaling rules on SQS Queues that you are importing via Lookup

Attention

If you already setup other Scaling policies for the service, beware of race conditions!

Special Features

Redrive policy

The redrive policy works exactly as you would expect it and is defined in the exact same way as for within
the SQS proprties. Only, here, you only need to put the queue name of the DLQ. The generated ARN etc. will be
fetched via exports (which also implicitly adds a lock on it).

Example with DLQ:

x-sqs:
 DLQ:
 Properties: {}
 Settings: {}
 Services: []

AppQueue:
 Properties:
 RedrivePolicy:
 deadLetterTargetArn: DLQ
 maxReceiveCount: 10
 Settings:
 EnvNames:
 - APPQUEUE01

Settings

Refer to Settings

Examples

Simple SQS Queues with DLQ configured

x-sqs:
 Queue02:
 Services:
 - name: app02
 access: RWPermissions
 - name: app03
 access: RO
 Properties:
 RedrivePolicy:
 deadLetterTargetArn: Queue01
 maxReceiveCount: 10
 Settings:
 EnvNames:
 - APP_QUEUE
 - AppQueue

 Queue01:
 Services:
 - name: app03
 access: RWMessages
 Properties: {}
 Settings:
 EnvNames:
 - DLQ
 - dlq

SQS Queue with scaling definition

x-sqs:
 QueueA:
 Services:
 - name: abcd
 access: RWMessages
 scaling:
 ScaleInCooldown: 120
 ScaleOutCooldown: 60
 steps:
 - lower_bound: 0
 upper_bound: 10
 count: 1 # Gives you 1 container if there is between 0 and 10 messages in the queue.
 - lower_bound: 10
 upper_bound: 100
 count: 10 # Gives you 10 containers if you have between 10 and 100 messages in the queue.
 - lower_bound: 100
 count: 20 # Gives you 20 containers if there is 100+ messages in the queue

Note

The last step cannot have defined a upper_bound. If you set one, it will be automatically be removed.

Note

You need to have defined x-configs/scaling/Range to enable step scaling on the ECS Service.

x-sns

Syntax

x-sns syntax reference

x-sns:
 Topics:
 TopicA:
 Properties: {}
 Settings: {}
 Services: []
 Subscriptions:
 SubscriptionA:
 Properties: {}
 Settings: {}
 Topics: []

Warning

At this current version, Subscriptions are not supported.

Properties

Refer to AWS SNS Topic Documentation [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html] for SNS Topics

Lookup

Lookup is currently implemented for SNS topics!

Examples

Create new topics

x-sns:
 Topics:
 abcd:
 Properties: {}
 Services:
 - name: app01
 access: Publish
 - name: you-too
 access: Publish

Create and Lookup SNS topics

x-sns:
 Topics:
 abcd:
 Properties: {}
 Services:
 - name: app01
 access: Publish
 - name: you-too
 access: Publish

 hello:
 Lookup:
 Tags:
 - costcentre: lambda
 - composexdev: "yes"
 Services:
 - name: app03
 access: Publish

x-events

This extension allows you to define an AWS EventBride rule to stop start services at specific times
of the day or based on specific events.

Properties

You can find all the properties on the AWS CFN Events Rules definitions [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html].

Note

You do not need to define Targets to point to the services defined in docker-compose. Refer to Services for that.

MacroParameters

No specific parameters at this time!

Settings

No specific settings at this time!

Services

There we define the tasks we want to deploy at specific times or events.

Services syntax for rules

name: service_name
TaskCount: <N>
DeleteDefaultService: True/False (default. False)

name

Here we want to define the name of the family we want to use for trigger. If the service is not defined as part of a
specific family, you can use the service name itself.

See also

Required: Yes.

TaskCount

Same property as for ECS Parameters of the Task Rule target definition [https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutTargets.html] itself, this allows you to set a specific number
of tasks.

Required: Yes.

Hint

Not using deploy/replicas on purpose, because of the DeleteDefaultService option

DeleteDefaultService

Custom setting, this allows you to NOT define a ECS Service along with the task, therefore you will only get the TaskDefinition
created.

x-kms

Syntax

x-kms:
 keyA:
 Properties: {}
 Settings: {}
 Services: []
 Lookup: {}

Properties

See AWS CFN KMS Key Documentation [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html]

Settings

Alias

In addition to EnvNames, for KMS, we also have Alias which will create an Alias along with the KMS Key.
The alias name must be a string, not starting with alias/aws or aws. If you specify a an alias starting with alias/
then the string will be used as is, if you only specify a short name, then the alias will be prefixed with the RootStack
name and region.

Examples

Simple key creation and link to services

x-kms:
 keyA:
 Properties:
 PendingWindowInDays: 14
 Services:
 - name: serviceA
 access: EncryptDecrypt
 - name: serviceB
 access: EncryptDecrypt
 Settings:
 Alias: keyA

Services

List of key/pair values, as for other ECS ComposeX x-resources.

Three access types have been created for the table:

	EncryptDecrypt

	EncryptOnly

	DecryptOnly

	SQS

KMS and Services

x-kms:
 keyA:
 Properties: {}
 Services:
 - name: serviceA
 access: EncryptDecrypt
 - name: serviceB
 access: DecryptOnly

IAM Permissions

Three access types have been created for the table:

	EncryptDecrypt

	EncryptOnly

	DecryptOnly

	SQS

KMS Permissions scaffold

{
 "SQS": {
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Effect": "Allow"
 },
 "DecryptOnly": {
 "Action": [
 "kms:Decrypt"
],
 "Effect": "Allow"
 },
 "EncryptOnly": {
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Effect": "Allow"
 },
 "EncryptDecrypt": {
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Effect": "Allow"
 }
}

x-vpc

Define a new VPC for your services or use an existing one

Syntax Reference

x-vpc:
 Create: {}
 Lookup: {}
 Use: {}

Create

Create example with a single NAT and 3 VPC Endpoints

x-vpc:
 Create:
 SingleNat: true
 VpcCidr: 172.6.7.42/24
 Endpoints:
 AwsServices:
 - service: s3
 - service: ecr.api
 - service: ecr.dkr

VpcCidr

The CIDR you want to use.
Default is 100.127.254.0/24.

SingleNat

Whether you want to have 1 NAT per AZ for your application subnets.
Reduces the costs for dev environments!

Endpoints

List of VPC Endpoints from AWS Services you want to create.
Default will create Endpoints for ECR (DKR and API).

EnableFlowLogs

Whether you want to have a VPC Flow Log created for the VPC.
It will create a new LogGroup and IAM Role to allow logging to CloudWatch.

FlowLogsRoleBoundary

For those of you who require IAM PermissionsBoundary for your IAM Roles, this allows to set the boundary.
If it starts with arn:aws it will assume this is a valid ARN, otherwise, it will use the value as
policy name.

Lookup

x-vpc:
 Lookup:
 VpcId:
 Tags:
 - key: value
 PublicSubnets:
 Tags:
 - vpc::usage: public
 AppSubnets:
 Tags:
 - vpc::usage: application
 StorageSubnets:
 Tags:
 - vpc::usage: storage0

Warning

When using Use or Lookup you MUST define all 4 settings:
* VpcId
* StorageSubnets
* AppSubnets
* PublicSubnets

Warning

When creating newly defined subnets groups, the name must be in the format ^[a-zA-Z0-9]+$

Hint

You can define extra subnet groups based on different tags and map them to your services for override when using
Lookup or Use

Extra subnets definition

x-vpc:
 Lookup:
 VpcId: {}
 AppSubnets: {}
 StorageSubnets: {}
 PublicSubnets: {}
 Custom01:
 Tags: {}

networks:
 custom01:
 x-vpc: Custom01

services:
 serviceA:
 networks:
 - custom01

Use

x-vpc:
 Use:
 VpcId: vpc-id
 AppSubnets:
 - subnet-id
 - subnet-id
 StorageSubnets:
 - subnet-id
 - subnet-id
 PublicSubnets:
 - subnet-id
 - subnet-id

Default VPC Network design

The design of the VPC generated is very simple 3-tiers:

	Public subnets, 1/4 of the available IPs of the VPC CIDR Range

	Storage subnets, 1/4 of the available IPs of the VPC CIDR Range

	Application subnets, 1/2 of the available IPs of the VPC CIDR Range

Default range

The default CIDR range for the VPC is 100.127.254.0/24
This leaves a just under 120 IP address for the EC2 hosts and/or Docker containers.

Hint

The range can be changed via VpcCidr but not the structure detailed above.
Works for all RFC 1918 and the 100.64.0.0/10 ranges.

x-cluster

This section allows you to define how you would like the ECS Cluster to be configured.
It also allows you to define Lookup to use an existing ECS Cluster.

Properties

Refer to the AWS CFN reference for ECS Cluster [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-cluster.html]

Override default settings

x-cluster:
 Properties:
 CapacityProviders:
 - FARGATE
 - FARGATE_SPOT
 ClusterName: spotalltheway
 DefaultCapacityProviderStrategy:
 - CapacityProvider: FARGATE_SPOT
 Weight: 4
 Base: 2
 - CapacityProvider: FARGATE
 Weight: 1

Lookup

Allows you to enter the name of an existing ECS Cluster that you want to deploy your services to.

Lookup existing cluster example.

x-cluster:
 Lookup:
 Tags:
 - name: clusterabcd
 - costcentre: lambda

Warning

If the cluster name is not found, by default, a new cluster will be created with the default settings.

Use

This key allows you to set a cluster to use, that you do not wish to lookup, you just know the name you want to use.
(Useful for multi-account where you can’t lookup cross-account).

x-alarms

Syntax reference

x-alarms:
 alarm-01:
 Properties: {}
 MacroParameters: {}
 Settings: {}
 Services: []
 Topics: []

Properties

ECS Compose-X will automatically detect whether your properties define an Alarm or a Composite Alarm.

See AWS CW Alarms definition [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html] and AWS CW Composite Alarms definition [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html]

Attention

When linking to Services and/or Topics, the OKActions, AlarmActions will be overridden accordingly.

Attention

You can only create new alarms. To use existing alarms with new services would required to modify
the actions of that alarm, which would be an external change to any IaC.

MacroParameters

For x-alarms, MacroParameters is here to help define in a simpler way a composite alarm. More specifically, all you have
to define is the Alarm expression

MacroParameters:
 CompositeExpression: <str>

CompositeExpression

String with a logical high level expression of the composite alarm.

Hint

In your expression, use the alarm name as defined in the compose file, not using the AlarmName property!
ECS Compose-X will automatically map to the CFN Alarm being created.

Services

x-alarms:
 kafka-scaling-01:
 Properties: {}
 Services:
 - name: <str>
 access: <str>
 scaling: {} # Service scaling definition

Topics

Topics syntax

x-alarms:
 alarms-01:
 Properties: {}
 Topics:
 - TopicArn: <str>
 NotifyOn: okay
 - x-sns: <str>
 NotifyOn: all

TopicArn

A string representing the topic ARN. The topic ARN must be valid (will be validated).

x-sns

Allows you to define a SNS topic that was defined in compose-x files already.
Supports new created topics and topics found via Lookup.

NotifyOn

This allows you to determine whether the messages should be published based on the alarm status.

	Value

	Alarm actions

	all

	OKActions

AlarmActions

	alarm

	AlarmActions

	okay

	OKActions

Examples

Alarm with scaling actions for service

x-alarms basic use-case

x-alarms:
 alarm-01:
 Properties:
 ActionsEnabled: True
 AlarmDescription: A simple CW alarm
 ComparisonOperator: GreaterThanOrEqualToThreshold
 DatapointsToAlarm: 1
 Dimensions:
 - Name: Cluster
 Value: DEV
 - Name: Topic
 Value: sainsburys.data.price-specification.batch.v1
 - Name: ConsumerGroup
 Value: sainsburys.applications.sc-dis.price-specification.retail-price.aut-test-consumer
 EvaluationPeriods: 5
 MetricName: TotalLagForTopicAndConsumerGroup
 Namespace: lag-metrics-v4
 Period: 60
 Statistic: Sum
 Threshold: 1.0
 TreatMissingData: notBreaching

 Services:
 - name: app03
 access: NA
 Scaling:
 scaling_in_cooldown: 300
 scaling_out_cooldown: 60
 steps:
 - lower_bound: 0
 upper_bound: 1000
 count: 1
 - lower_bound: 1000
 upper_bound: 10000
 count: 3
 Topics:
 - TopicArn: arn:aws:sns:eu-west-1:012346578900:topic/sometopic
 - x-sns: topic-01

x-sns:
 Topics:
 topic-01:
 Properties: {}

Example CompositeAlarm with MacroParameters

x-alarms:
 alarm-01:
 Properties {}

 alarm-02:
 Properties: {}

 composite-alarm:
 MacroParameters:
 CompositeExpression: ALARM(alarm-01) and ALARM(alarm-02)

Hint

When the alarms is only for the service, the alarm gets created in the same stack as the service(s).
When the alarm has both services and topics, the alarms are created in a separate stack.

Hint

When defining a composite alarm, the actions defined in Services or Topics are ignored.

spot_config

This module is not strictly a module which the same settings as the other AWS resources. This is a module which allows
users to create the EC2 compute resources necessary to run the ECS Containers on top of EC2 workloads.

Note

At this point in time, there is no support for creating Capacity providers in CloudFormation, therefore we cannot
implement that functionality.

Note

By default, everything is built to use EC2 spot fleet, simply to save money on deployment for testing.
Future will allow to run pure OnDemand or hybrid mode.

Define settings in the configs section

At the moment, the settings you can change for the compute definition of your EC2 resources are defined in

configs -> globals -> spot_config

Example:

x-configs:
 spot_config:
 bid_price: 0.42
 use_spot: true
 spot_instance_types:
 m5a.xlarge:
 weight: 4
 m5a.2xlarge:
 weight: 8
 m5a.4xlarge:
 weight: 16

With the given AZs of your region, it will create automatically all the overrides to use the spot instances.

Note

This spotfleet comes with a set of predefined Scaling policies, in order to further reduce cost or allow for
scaling out based on EC2 metrics.

Warning

We cannot recommend any more to use AWS Fargate and configure your capacity providers instead of EC2 instances.
Use with caution

Docker ECS Plugin support

Soon after the Open source release of the Compose definition, AWS and Docker worked on a new
docker plugin, the ecs-plugin which allows to perform some similar tasks as with ECS ComposeX.

However, these fields usually will require full ARN of your resources, whereas ECS ComposeX will
allow you to do discovery of your resources and I hope give you a lot more flexibility.

With that said, the objective of ECS ComposeX is to help developers and so I added the support for
the ECS Plugin extensions fields.

See also

Docker and ECS official documentation [https://docs.docker.com/engine/context/ecs-integration/]

x-aws-cluster

As per the official documentation, this allows you to define the ARN of an ECS Cluster you have
that you want to use to deploy the services into.

If left empty, a new cluster gets created.

With ComposeX you can use the expected ARN to indicate which cluster to deploy to. Equally, you can
provide just the name of the Cluster, ComposeX will filter it out of the ARN and behave in a similar fashion
as x-cluster/Use

See also

x-cluster

x-aws-pull_credentials

This allows you to define the secret in secrets manager that contains the username/password for
authentication with a private docker image registry.

With ComposeX you can either use it as is defined in the official documentation or combine it with
the docker-compose secrets.

Example of ARN use

services:
 app01:
 image: private.registry.mydomain.net/repository-app01
 x-aws-pull_credentials: "arn:aws:secretsmanager:eu-west-1:012345678912:secret:/path/to-creds"

Example with docker-compose secret definition

secrets:
 private_repository:
 x-secrets:
 Name: /path/to/creds

services:
 app02:
 image: private.registry.mydomain.net/repository-app02
 x-aws-pull_credentials: secrets::private_repository

Hint

For either methods, this will add the RepositoryCredentials property to the Task definition
and add an IAM policy to the Execution Role to secretsmanager:GetSecretValue

Hint

When using the ECS ComposeX way, you can use all the existing features of secrets (Lookup etc).

Warning

You cannot use JsonKeys for this secret.

x-aws-autoscaling

This setting allows you to define autoscaling configuration for your service. With the ECS Plugin
you can define CPU and RAM autoscaling which are assigned to the ECS Service.

If in your docker-compose files you have not defined x-scaling this will be used to define the
scaling policies.

However, in case you set both x-aws-autoscaling and x-scaling, the latter will be used and the
x-aws-autoscaling settings are ignored.

This is by design as x-scaling allows for a lot more settings to be defined than x-aws-autoscaling

x-aws-policies

This allows to define additional IAM policies that are assigned to the ECS Task Role.
It behaves exactly in the same way as x-iam/ManagedPolicies does.

ECS Plugin syntax

services:
 foo:
 x-aws-policies:
 - "arn:aws:iam::aws:policy/AmazonS3FullAccess"

ECS Compose-X syntax

services:
 foo:
 x-iam:
 ManagedPolicies:
 - "arn:aws:iam::aws:policy/AmazonS3FullAccess"

x-aws-role

Allows to defined extra IAM policies. However, not that the ECS Plugin is going to automatically
generate the name of the policy assigned to the ECS Task Role.

ECS ComposeX syntax is a little lengthier to get to the IAM policies. However, allows you to define
your own policy and you can have multiple ones.

ECS Plugin syntax

services:
 foo:
 x-aws-role:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "some_aws_service"
 Resource:
 - "*"

ECS ComposeX Syntax

services:
 foo:
 x-iam:
 Policies:
 - PolicyName: SomeName
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "some_aws_service"
 Resource:
 - "*"

Hint

For x-aws-role and x-aws-policies, ECS ComposeX will not override what you had defined and instead
simply merge the two definitions.

Hint

If you need to defined IAM permissions boundary, you can with ECS Compose-X.
x-iam

x-aws-logs_retention

Allows you to define the CloudWatch Log Group RetentionInDays period.
When used in combination with ComposeX x-logging, the highest(max) value will be used as we consider you might want
the longest period for tracking purposes.

If either is set and the other is not, the value is set accordingly.

Example with just x-aws-logs_retention

services:
 serviceA:
 x-aws-logs_retention: 42

Both x-logging and x-aws-logs_retentions defined. Here, 64 will be set.

services:
 serviceA:
 x-logging:
 RetentionInDays: 42
 x-aws-logs_retention: 64

See also

x-logging

Hint

If you set an arbitrary value that would not be a valid value for AWS logs retention, ComposeX will automatically
match to the closest valid value. For example, for 42, this will be 30. For 64, it will be 60.

x-aws-min_percent & x-aws-max_percent

This allows to define the percentages for ECS Deployment Configuration.

services:
 serviceA:
 x-aws-min_percent: 50
 x-aws-max_percent: 150
 deploy:
 replicas: 4
 update_config:
 failure_action: rollback

History

0.14.0 (2021-03-23)

Version 0.14.0 is a release coming with a new LICENSE attached, the Mozilla Public License 2.0 (MPL 2.0).

	1e82eed LICENSE change to MPL-2.0 (John Preston)

New features

	9fbe3aa New pre-defined alarms for services (#432) (John Preston)

	a6083d7 Added CompositeAlarm support (#431) (John Preston)

Fixes

	534dcd0 reversed conditions logic for IAM Role for SAR template (John Preston)

	9f145cf Publish template for AWS SAR (#438) (John Preston)

	8008043 Removing the scaling target and scaling policies (#436) (John Preston)

	122efae Fixed output attribute name for S3 to RDS feature (#433) (John Preston)

Improvements

	1eeb6f6 Upgrade to Troposphere 2.7.0 (John Preston)

	2afec02 Improved macro settings override and layer key (#440) (John Preston)

	51a568f new cfn-macro Parameter BucketName (#439) (John Preston)

	ef08ae9 New image URL for XRay (John Preston)

	670bf27 Adding default prefix for default log group name (#428) (John Preston)

0.13.0 (2021-03-10)

This new version comes with a good mix of fixes and new features supported.
In an effort of always improving docker-compose compatibility, a number of features have been added.
Volumes support is added for both local volumes (non-bind) and shared volumes (via EFS).
Alarm support added to allow creating arbitrary alarms and scaling policies on metrics for non Compose-X managed
resources.

New Features

	33f7b45 x-alarms support (#425)

	e12d25a ECS DeploymentConfiguration support with Circuit breaker (#423)

	dad6d02 awslogs drivers options support (#422)

	b66876b Added lookup for SecurityGroups in Ingress (#401)

	c3c1565 x-efs (#395)

	df7d085 Added tmpfs support

	d19e60d Added sysctls support

	8c4c30e Added working_dir support

	71cb736 Added shm_size support

	a09d233 Added cap_add,cap_drop support

	69bc348 Added support for Ulimits

	3f380c7 docker-compose ECS local volumes support (#391)

Fixes

	811f88d Fixing URLs

	cae1336 build can be either a string or dict

	f093931 Fixed self-ingress process (#417)

	ec3dbc4 Fixing VpcId.Use and x-dns when not set (#415)

	f0d6635 Fixing lookup resource output condition (#411)

	6dbef07 Fixing s3 to ecs bug for lookup (#400)

	7edc838 Renamed and fixed condition for registries (#392)

	8876047 For PrivateNamespace in CloudMap, using ns-ID (#388)

	b7130ea Family name is as defined in compose files, and LB use that name instead of logical name (#386)

Improvements

	765426b Updated docs

	07c6db2 Using troposphere 2.6.4

	7a31e63 Simpler regexp to group required, ping and optional healthcheck (#416)

	4977767 x-elbv2 settings in macro parameters for LB Attributes (#410)

	0ea035a Code Cleanup and Refactor (#409)

	8059454 Moved x-s3 settings to MacroParameters and cleaned up old unused code (#407)

	8773299 Healthcheck times translated from str to int (#406)

	5a49890 When not public NLB, allows to override the LB Subnets to use (#402)

	695624f Added compatibility matrix (#398)

	ec184fc Generic attributes output configuration (#396)

	5f1cc0b Adding a message to inform that no port were defined but UseCloudmap (#387)

0.12.0 (2021-01-31)

New features

	dd9246c Allowing to define features by names and related resources (#376) John Preston

	2d0ef6d Allow to define RoleArn for DNS Lookup (#377) John Preston

	d85fd90 Add an IAM Role to RDS for S3import feature (#373) John Preston

Fixes

	b690d60 Fixing ingress parsing for Ingress (#382) John Preston

	01c0582 Fix import value for subnets to Join for custom subnets (#381) John Preston

	8f2b777 Passing the subnets as a string with !Join from mappings (#380) John Preston

	d72e9c1 Fixed events. Dumbed down the Fargate version John Preston

	913d451 Fixing AppMesh

	397c4cf Fixed ACM certificate mapping (#366) John Preston

	f09ad64 Fix S3 name generation, events subnet param (#357) (jacku7) Jack Saunders

Improvements

	95f76ab Updated lookup based to be more accurate (#378) John Preston

	62b27f7 Documentation updates/fixes and macro install/usage guide (#372) John Preston

	1e77c87 Working lookup of DNS zones. Relies on DNS Name only. John Preston

	5a8b659 VPC and subnets now in mappings John Preston

	913d451 Zones require name John Preston

	54593eb ECS Cluster “pointer” as a variable of settings John Preston

	d801463 * Files pulled for remote files are stored with tempfile * Fixing x-dns John Preston

	0267cbc Refactor of DNS into more gracious handling John Preston

	e56b667 * Refactored ECS Cluster creation for simplicity John Preston

	ba511dd Create a nightly manifest list pointing always to the latest (#364) John Preston

	3596286 Docker image release-work (#363) John Preston

	02591ce Support for OIDC and Cognito AUTH action in x-elbv2 (#339) John Preston

	fb36420 Updating build conditions and methods (#362) John Preston

	06d5776 Adding sitemap and meta keywords (#360) John Preston

	29e75ef Re-arranging test files and patching up CI files (#361) John Preston

Special changes

The following changes all relate to the release a CFN Macro of ECS Compose-X

	1aea413 Allow to set override Function IAM Role John Preston

	b804360 Maintain policy on previous layer versions (#383) John Preston

	5fe8169 Adding retain policy on layer version permissions (#374) John Preston

	ae3d42a AWS Lambda Layer build and release (#371) John Preston

	2b1c21b Adding macro image build phase and deploy template (#370) John Preston

0.11.0 (2021-01-14)

First release of 2021 focusing on some new features / extension of existing features,
as well on improving stability.

New features

885e89e - DB Secrets exposable to services (#356) (John Preston)
b723cc7 - Allow to override subnets to use for resources deployed inside VPC (#353) (John Preston)
0c6c86c - Create PrefixList for VPC and suibnets when creating a new VPC (#352) (John Preston)
4405fef - Support for ElasticCache Cluster via x-elasticache (#350) (John Preston)
59ceae0 - Added support for CodeGuru Profiling Group (#323) (John Preston)
97529fa - x-docdb support for DBClusterParameterGroup (#349) (John Preston)
a8888b6 - Extending ecs-plugin x-fields support (#336) (John Preston)

Improvements

faed0d3 - Align to CamelCase for x-scaling and x-network settings (#347) (John Preston)
249ba18 - Moved defauls into properties dicts. Added more docstrings for clarity (#345) (John Preston)
97345c7 - Pyup/updates (#329) (John Preston)
774640b - Create pyup.io config file (#327) (pyup.io bot)

Fixes

8d14ac0 - Fix for use_cloudmap (#346) (John Preston)
aa1ba40 - Fixed properties update (#344) (John Preston)
d2cd544 - Fixing VPC related settings (#341) (John Preston)

0.10.0 (2020-12-13)

New features

	976e5bb Support for env_file (#318)

	a432763 Import simple SAM IAM policies templates. (#316)

	db2c8fe Support for service-to-service explicit ingress (#300)

	fe1e0af Added to support DB Snapshot for new DB creation (#297)

	73cdf9a x-vpc - Support for VPC FlowLogs (#296)

	b9f1ec8 Scaling rules for Lookup queues (#293)

	54faa50 Feature x-dns::Records to add Public DNS Records pointing to elbv2 (#289)

	d5a97a1 Adding support for kinesis streams (#287)

Improvements

	1be3b99 Improved secrets JsonKeys based on suggestions (#322)

	6302bc6 x-rds:: Refactor Properties/MacroParameters/Settings (#309)

Fixes

	191d420 No interpolate ${AWS::PseudoParameters} (#324)

	de87457 Bug fixes for RDS/DocDB and ECS containers (#305)

	4220d7d TMP solution pending AWS official XRay publish (#304)

	2c1fcfc Fix/duplicate secrets keys (#303)

	4befc25 Fixed backward logic (#301)

Other updates and corrections

	31d7bcc Added kinesis docs (#313)

	997f0d9 Added back exports but not using in ComposeX. For cross-stacks usage (#310)

	cb0be55 Linted up code (#307)

	5e559f0 Prefixing the log group with the root stack name for uniqueness (#295)

	c81f443 Refactored to single function recursively evaluating properties (#291)

	16a5d39 Code linting (#285)

0.9.0 (2020-11-26)

New features

	cabd793 - Support for networks: and mapping to additional subnets. (#282)

	ba4ed5c - ECS Scheduled tasks support (#280)

	82e2086 - Defaulting to encrypted for RDS (#276)

	a516a09 - Added support for service level x-aws keys from ecs-plugin (#273)

	5e1ab08 - Improved logging settings (#265)

	96ad398 - x-secrets::Lookup (#256)

	dfb249c - Lookup for ACM working (#254)

	ea6e05c - Feature x-docdb (#252)

	0a4d258 - Refactor services to root stack (#248)

	49a9d31 - ARN of TGT Group always passed to service stack (#245)

	eafcd38 - Updated documentation (#236)

	aa4c96b - Feature x-elbv2 with x-acm support and validation via x-dns (#228)

	fb0bc4a - Allowing RoleArn in x-rds Lookup (#233)

	22feb56 - Lookup via resources tag api for VPC resources (#231)

	be536c1 - Cross-Cccount assume role generally and locally for lookup (#229)

	32075f2 - Allow for custom cooldown for steps (#221)

	ca89836 - Upgrading troposphere==2.6.3 (#216)

	3a1b0c8 - Linting DynDB features and use-case files (#213)

	67cc67e - Feature x-s3 (#196)

	230a9d3 - Lookup RDS DB/Clusters and secrets (#211)

Fixes

	fc55f4b - Patched version of 0.8.9 with previews for 0.9.0 (#275)

	1dc4113 - Replaced LOG.warn with LOG.warning (#271)

	42c7027 - Docs improvements (#278)

	78bef91 - Clarified Ingress syntax (#261)

	af31f33 - Fixed a number of small issues (#259)

	02da4e1 - Hotfix services attributes (#243)

	fb7265a - During PyCharm refactor, error change occured (#238)

	c46c208 - Fixing import export string (#224)

	7669799 - Removing missed print (#217)

	4171044 - Fixing condition when QueueName property is set (#210)

	0ced643 - Patched SQS based scaling rule and alarm (#202)

Syntax changes from previous version

	86d2141 - Refactor/services xconfig keys (#269)

	1cfa6b7 - Refactor AppMesh properties keys (#262)

	d753473 - Refactor to classes for XResources and Compose resources (#219)

Documentation theme changed to Read The Docs and tuned some colors.

0.8.0 (2020-10-09)

New features:

	Support for ECS Scaling based on SQS Messages in queue [https://github.com/compose-x/ecs_composex/pull/194]

	Support for ECS Scaling based on Service CPU/RAM values (TargetTracking) [https://github.com/compose-x/ecs_composex/issues/188]

	Support for using existing Secrets in AWS Secrets Manager [https://github.com/compose-x/ecs_composex/pull/193]

	Support for Service logs expiry from compose definition [https://github.com/compose-x/ecs_composex/issues/165]

	Enable to use AWS CFN native PseudoParameters in string values [https://github.com/compose-x/ecs_composex/issues/182]

	Improved Environment variables interpolation to follow the docker-compose behaviour [https://github.com/compose-x/ecs_composex/issues/185]

Closed reported issues:

	https://github.com/compose-x/ecs_composex/issues/175

Some code refactor and bug fixes have gone in as well to improve stability and addition of new services.

0.7.0 (2020-08-12)

New features:

	Support for AWS Secrets mapping to secrets in docker-compose [https://github.com/compose-x/ecs_composex/pull/142]

	Support for Use on VPC which needs no lookup

	Support for IAM policies to manually add ad-hoc permissions outside of the pre-defined ones

	Additional configuration file to use with CodePipeline

Various bug fixes and some small features to help making plug-and-play easier.
Introduction to Use which should allow for resources reference outside of your account
without cross-account lookup.

0.6.0 (2020-08-03)

New features:
* Docker-compose multi-files (override support) [https://github.com/compose-x/ecs_composex/issues/121]

The new CLI uses positional arguments matching a specific command which drives what’s executed onwards.
Trying to re-implement features as close to the docker-compose CLI as possible.

	config allows to get the YAML file render of the docker-compose files put together.

	render will put all input files together and generate the CFN templates accordingly.

	up will deploy do the same as render, and deploy to AWS CFN.

0.5.3 (2020-07-30)

A lot of minor bug fixes and removing CLI commands to the benefit of better implementation via the compose file.

0.5.2 (2020-07-30)

New features:

	Support for AWS KMS [https://github.com/compose-x/ecs_composex/issues/77]

The support for KMS will be extended to use the CMK for RDS/SQS/SNS and any resource that can use KMS for encryption
at rest.

Hint

Mind, this might occur a few extra costs.

0.5.1 (2020-07-28)

Small bug patches and code refactoring.
SQS now into a single stack unless there are more than 30 queues.

0.5.0 (2020-07-27)

New features

	DynOAamoDB support [https://github.com/compose-x/ecs_composex/issues/31]

	Lookup for existing tables which the services get IAM access to.

0.4.0 (2020-07-20)

	ACM Support for ALB/NLB for public services. [https://github.com/compose-x/ecs_composex/issues/93]

	AWS AppMesh support [https://github.com/compose-x/ecs_composex/issues/57]

	Attempt to making navigation through docs better.

	Automatic release to https://nightly.docs.ecs-composex.lambda-my-aws.io/ from master

To help with code quality and support, I subscribed to the following services:

	CodeScanning using SonarCloud.io [https://sonarcloud.io/dashboard?id=lambda-my-aws_ecs_composex]

	CodeCoverage reports with Codecov [https://codecov.io/gh/lambda-my-aws/ecs_composex]

0.3.0 (2020-06-21)

Refactored the way the services, task definitions and containers are put together, in order to support multiple new features:

	Allow multiple services to be merged into one Task definition [https://github.com/compose-x/ecs_composex/issues/78]

	Support Docker compose v3 compute definition [https://github.com/compose-x/ecs_composex/issues/32]

The support for Docker compose compute settings allows to add up all the CPU / RAM of your service(s) and identify the
closest Fargate CPU/RAM configuration for the Task Definition (the respective CPU/RAM of each task is unchanged).

The docker-compose file is now more strictly close to the definition set in Docker Compose, with regards to attributes
and their expected types.

Note

In order to respect more closely the docker-compose definition, the key previously used configs now is x-configs

0.2.3 (2020-04-16)

Refactored the ecs part into a class and reworked the configuration settings to allow for easier integration.
Documentation has been updated to reflect the changes in the structure of the configs section.

New features

	
	Enable AWS X-Ray (#56 [https://github.com/compose-x/ecs_composex/issues/56])
	Enabling X-Ray will allow developer to get APM metrics and visualize the application interaction with other
services.

	
	No-upload (#64 [https://github.com/compose-x/ecs_composex/issues/64])
	This allows to store the templates locally only.

Note

The templates are still validated from their body

	
	IAM Boundary for the IAM roles (#55 [https://github.com/compose-x/ecs_composex/issues/55])
	Permissions boundary are an IAM feature that allows to set boundaries which superseed other permissions associated
to the entity. It is often the put as a condition for users creating roles to assign a specific Permission Boundary
policy to the roles created.

0.2.2 (2020-04-10)

Refactor of the ECS service template into a single class (still got to be reworked).
Refactored the ECS Services into a master class which ingests the CLI kwargs directly.

Reworked and reorganized documentation to help with readability

0.2.1 (2020-05-03)

Code refactored to allow a better way to go over each template and stack so everything is treated in memory
before being put into a file and uploaded into S3.

	
	Issues closed
	
	Docs update and first go at IAM perms (#22 [https://github.com/compose-x/ecs_composex/issues/22])

	Refactor of XModules logic onto ECS services (#39 [https://github.com/compose-x/ecs_composex/issues/39])

	Templates & Stacks refactor (#38 [https://github.com/compose-x/ecs_composex/issues/38])

	Update issue templates for easy PRs and Bug reports

	Added make conform to run black against the code to standardize syntax (#26 [https://github.com/compose-x/ecs_composex/issues/26])

	Allow to specify directory to write all the templates to in addition to S3. (#27 [https://github.com/compose-x/ecs_composex/issues/27])

	Reformatted with black (#25 [https://github.com/compose-x/ecs_composex/issues/25])

	Expand TagsSpecifications with x-tags (#24 [https://github.com/compose-x/ecs_composex/issues/24])

	Bug fix for root template and Cluster reference (#20 [https://github.com/compose-x/ecs_composex/issues/20])

Documentation structure and content updated to help navigate through modules in an easier way.
Documented syntax reference for each module

New features

	
	#6 [https://github.com/compose-x/ecs_composex/issues/6] - Implement x-rds. Allows to create RDS databases with very little properties needed
	
	Creates Aurora cluster and DB Instance

	Creates the DB Parameter Group by importing default settings.

	Creates a common subnet group for all DBs to run into (goes to Storage subnets when using –create-vpc).

	Creates DB username and password in AWS SecretsManager

	Applies IAM permissions to ECS Execution Role to get access to the secret

	Applies ECS Container Secrets to the containers to provide them with the secret values through Environment variables.

0.1.3 (2020-04-13)

A patch release with a lot of little features added driven by the writing up of the blog to make it easier to have in
a CICD pipeline.

See overall progress on GH Project [https://github.com/orgs/lambda-my-aws/projects/3]

Issues closed

	Issue 14 [https://github.com/compose-x/ecs_composex/issues/14]

	Issue 15 [https://github.com/compose-x/ecs_composex/issues/15]

0.1.2 (2020-04-04)

Patch release aiming to improve the CLI and integration of the Compute layer so that the compute resources creation
in EC2 are standalone and can be created separately if one so wished to reuse.

Issues closed

Issue [https://github.com/compose-x/ecs_composex/issues/7] related to the fix.

PR [https://github.com/compose-x/ecs_composex/pull/8] related to the fix.

0.1.1 (2020-04-02)

Added tags definition from Docker ComposeX with the x-tags which allows to add tags
to all resources that support tagging from AWS CFN

x-tags:
 - name: TagA
 value: SomeValue
 - name: CostcCentre
 value: IamNotPayingForThis
 - name: Some:Special:Key
 value: A long weird value

or alternatively in an object/dict format

x-tags:
 TagA: ValueA
 TagB: ValueB

0.1.0 (2020-03-24)

	
	First release on PyPI.
	
	Working VPC + Cluster + Services

	Working expansion of existing Cluster with new VPC

	Working expansion of existing VPC and Cluster with new services

	IAM working to allow services access to SQS queues

	SQS Queues functional with DLQ

	Works on Python 3.6, 3.7, 3.8

	Working start of build integration in CodeBuild for automated testing

Extras

Plug & Play to existing resources with auto discovery

Since the start of this project, the ability to plug & play to an existing infrastructure has been a priority to this
project.

At the very beginning of it, it was mostly based out of finding one specific ID for a specific resource and it was rather
complex and somewhat prone to errors, as software always is.

It has evolved since and improved significantly to allow a more flexible approach, relying nearly only on your resources
and their tags.

Resource tags are a fantastic way to identify and distinguish resources from one another. More often than not, the resource
ID of a resource, will be better left generated by AWS so you can later update it further without requiring replacement.
But then one often finds a friendly tag, Name which allows us to know at a glance what the resource is about.

Now, looking for resources in your own account is easy but sometimes, you might need to be able to cross borders and identify
shared resources into another AWS account.

You will find in the Lookup feature an option to specify a specific IAM role to use in order to perform the API calls.
This IAM role corresponds to the IAM role in your “other” account which will give you permissions to look around for your
resources.

Finally, alternatively, if you do not have cross-account in place or have some resources untagged, you can simply use the
Use feature and provide directly the ID or ARN (depends based on the resource type) that you wish to use.

For further information, refer to Lookup

Docker ECS-Plugin x-aws-keys support

In order to keep make the integration and inter-operability of tools used by developers, we are going to add support
for, mostly, services level x-aws keys such as -xaws-iam-role or x-aws-autoscaling.

This will allow developers who might have started a journey to ECS using the docker ecs plugin to continue that journey
with ECS Compose-X without making too many changes.

In case for a similar setting, such as x-aws-iam-policies which in ECS Compose-X is under x-iam/Policies, these
non conflicting settings will add up together. However, in case of conflicting information, the ECS Compose-X definition
will prevail over the x-aws-keys.

AWS AppMesh integration

AWS AppMesh is a service mesh which allows you to define how services talk to each other at an application L7) level,
and optionally, TCP (layer 4) level. It is extremely powerful

Since the beginning of the project, we have been using AWS Cloud Map to create a private DNS Hosted Zone linked to the
VPC created at the same time. This allowed us to very simply register into the PHZ (private hosted zone) via Service
Discovery.

We are going to use these entries to make a 1-1 mapping between our services defined in the services section of the
docker-compose file and the nodes listed in the x-appmesh section.

AppMesh uses envoy as a side-car proxy that will capture our services packets and route these to their defined backends.
Using AWS AppMesh empowers developers to declare how services are supposed to communicate together, what to do in case
of errors, and administrators can define whether or not the traffic between all the components should be done using TLS
termination end-to-end, to ensure no man-in-the-middle attacks could happen.

The syntax for AppMesh in ECS Compose-X is a mix of Istio, Envoy and AWS AppMesh definitions.

See also

x-appmesh

Services autoscaling integration

You can now define scaling for your ECS Services using
* CPU / RAM Target Tracking scaling
* SQS Messages (visible) depth with step scaling.

For example, we want to scale our front-end based on CPU usage and our backend, dealing with queues, based on messages
numbers.

services:
 frontend:
 ports:
 - 80:80
 image: my-nginx
 deploy:
 replicas: 2 # by default I want 2 containers
 x-scaling:
 Range: "1-10" # 1 to 10 containers to deploy for the service
 TargetScaling:
 CpuTarget: 80 # Means 80% average for all containers in the service.
 backend:
 image: my-worker
 deploy:
 replicas: 1 # Initially I want 1 container running to make sure everything is working
 x-configs:
 scaling:
 Range: "0-10" # I can have between 0 to 10 containers. 0 because I am happy not paying when nothing to do

x-sqs:
 jobs-queue:
 Properties: {}
 Settings: {}
 Services:
 - name: frontend
 access: RWMessages
 - name: backend
 access: RWMessages
 scaling:
 steps:
 - lower_bound: 0
 upper_bound: 10
 count: 1
 - lower_bound: 10
 upper_bound: 20
 count: 2
 - lower_bound: 20
 count: 21

As you can see we defined scaling for SQS only on the backend, as we don’t need to scale the frontend based on that.
Also we set the count for final step to 21, which is higher than the Range indicated.

Our frontend will be managed by ECS itself which will be ensuring that the average CPU usage across the service remains under 80%.

Hint

In composex, you must define a generic Range first, and if you override it in the scaling, it will take the highest count of all scaling policies.

Note

Scaling with target tracking based on ELBv2 metrics is coming too.

Fargate CPU/RAM auto configuration

When you want to create services on ECS, you first need to create a Task Definition. Among the IAM permissions and the
network configuration, the Task definition also defines how much CPU and RAM you want to have available for all your
containers in the task.

If you have only one service, you might as well just not put any limits at the Container Definition level, and let
it use all the available CPU and RAM defined in the Task Definition.

Hint

The Task definition CPU and RAM is the maximum CPU and RAM that your containers will be able to use.
The amount of CPU and RAM in AWS Fargate is what determines how much you are paying.

But when you start to add side-cars, such as Envoy, X-Ray, or your WAF, your reverse-proxy, you want to start setting
how much CPU and RAM these containers can use out of the Task Definition.

In docker-compose (or with swarm), you already have the ability to define the CPU limits and reservations you want to
give to each individual service in the compose file.

To help having to know the different CPU/RAM settings supported by AWS Fargate, ECS Compose-X, if defined, will automatically
use the limits and reservations configuration set in your Docker compose file, and determine what is the closest
CPU/RAM configuration that will allow your services to run into.

Hint

Setting at least the reservation values so your containers are guaranteed some capacity in case
other containers get to use more resources than expected.

See also

deploy [https://docs.docker.com/compose/compose-file/#deploy] reference.

We have the following example:

Blog applications base file for testing

version: '3.8'
services:
 rproxy:
 image: ${IMAGE:-nginx}
 ports:
 - 80:80
 deploy:
 replicas: 2
 resources:
 reservations:
 cpus: "0.1"
 memory: "32M"
 limits:
 cpus: "0.25"
 memory: "64M"
 depends_on:
 - app01

 app01:
 image: ${IMAGE:-nginx}
 ports:
 - 5001
 deploy:
 resources:
 reservations:
 cpus: "0.25"
 memory: "64M"
 environment:
 LOGLEVEL: DEBUG
 SHELLY: ${SHELL}
 TERMY: "$TERM"
 links:
 - app03:dateteller

 app02:
 image: ${IMAGE:-nginx}
 ports:
 - 5000
 deploy:
 resources:
 reservations:
 cpus: "0.25"
 memory: "64M"
 environment:
 LOGLEVEL: DEBUG

 app03:
 image: ${IMAGE:-nginx}
 ports:
 - 5000
 deploy:
 resources:
 reservations:
 cpus: "0.25"
 memory: "64M"
 environment:
 LOGLEVEL: DEBUG
 volumes:
 - shared-images:/shared/images
 secrets:
 - abcd
 - zyx

volumes:
 shared-images: {}

secrets:
 zyx:
 external: True

We have CPU and RAM limits set for both limits and reservations. So we know that we can use the limits, add them up,
and this will indicate us our CPU configuration.

Hint

In docker compose, you indicate the CPU as a portion of vCPU. A value of 1.0 means 1024 cycles, or 1vCPU.
A value of 0.25 equals to 256 cycles, which equivals to .25 of a vCPU.

We get:
* 0.75 vCPU (limits)
* 192MB of RAM.

The closest configuration for Fargate that will cater for the amount of vCPU, is 1024. With 512 only, we could run
low in cpu cycles.

So then, from there, we know that Fargate will allow for a minimum of 2GB of RAM. So our CPU/RAM configuration will be
1024 CPU cycles and 2048MB of RAM.

Now, let’s say we know that our rproxy (NGINX based) will only need .1 CPU at most and 128M of RAM, and we want to make
sure that the application container, does not take all the CPU and RAM away from it, but also that it should not go over
these limits.

So we are going to set these limits for the rproxy container.

Hint

If you do not set the reservations, the container could potentially free compute resources to the benefit of others,
but at the risk of having none available.

Now, let’s say we know our application will use a minimum of 256M, and up to .25 of a CPU.

Let’s count:
* .1 vCPU (limit+reservation) and .25 (reservation). We get 0.35vCPU.
* 128MB RAM (limit+reservation) and 256M (reservation), We get 284MB.

The closest configuration for Fargate is .5vCPU and 1024MG of RAM. But, also, our application container can use up to
1024-128 = 896MB of RAM, as we did not set a limit. For some applications where you are not totally sure of the RAM you
might need, this is a good way to keep for free space, just in case.

Note

Chances are, if you are using so low CPU/RAM for your microservice, you might be running it in AWS Lambda!

Hint

You might think that for the CPU you need, ie. 1vCPU, which means you need at least 2GB of RAM for the appropriate
Fargate profile, is a lot of RAM wasted.

However, in this configuration, the CPU represents ~80% of the costs (29.5$+6.5$=36$).

Multiple services, one microservice

Hint

Refer to labels for more details.

Regularly developers will build locally multiple services which are aimed to work together as a group. And sometimes,
these services have such low latency requirements and dependency on each other, that they are best executed together.

In our example before, where we use NGINX to implement webserver logic, configuration and security, and leverage the
power of a purpose-built software, as opposed to re-implement all that logic directly in your application, we might
to run these two together.

On your workstation, when you run docker-compose up, it obviously is going to run it all locally. However, by default,
these are defined as individual services.

To allow multiple services to be merged into a single Task Definition, and still treat your docker images separately,
you can use a specific label that ECS Compose-X will recognize to group services into what we called a family.

ECS already has a notion of family, so I thought, we should use that naming to group services logically.

The deploy labels are ignored on a container level, therefore, none of these tags will show when you deploy the services.

Hint

The labels can be either a list of strings, or a “document” (dictionary).

But then you might wonder, how come are the permissions going to work for the services?

Remember, the permissions are set at the Task definition level. So any container within that service, will get the
same permissions.

However, for the database as an example, which creates a Secret in AWS Secrets Manager, which we would then expose
to the service with the Secrets attribute of the Container Definition, ECS Compose-X will specifically add that
secret to that container only.
Equally, for the services linked to SQS queues or SNS topics (etc.), the environment variable providing with the ARN of
the resource, will also only expose the value to the container set specifically.

In case you wanted to allow an entire family of services to get access to the resources, you can also give, as the
service name in the definition, the name of one of your families defined via the labels.

For example,

services:
 worker01:
 image: worker01
 deploy:
 labels:
 ecs.task.family: app01

 worker02:
 image: worker02
 deploy:
 labels:
 ecs.task.family: app01

x-sqs:
 Queue01:
 Properties: {}
 Services:
 - name: app01
 access: RWMessages

Philosophy

CloudFormation is awesome, the documentation is excellent and the format easy. So ECS Compose-X wants to keep the format
of resources Properties as close to the orignal as possible as well as making it easier as well, just alike resources
like AWS::Serverless::Function which will create all the resources around your Lambda Function as well as the function.

Trying to implement DevOps starting with developers

Whilst this is something that can be used by AWS Cloud Engineers tomorrow to deploy applications on ECS on the behalf
of their developers, the purpose of ECS Compose-X is to enable developers with a simplistic and familiar syntax that
takes away the need to be an AWS Expert. If tomorrow developers using Compose-X feel comfortable to deploy services
by themselves, I would be able to stop hand-holding them all the time and focus on other areas.

Community focused

Any new Feature Request submitted by someone other than myself will get their request prioritized to try address their
use-cases as quickly as possible.

Submit your Feature Request here [https://github.com/lambda-my-aws/ecs_composex/issues/new/choose]

Ensure things work

It takes an insane amount of time to test everything as, generating CFN templates is easy, testing that everything
works end-to-end is a completely different thing.

I will always do my best to ensure that any new feature is tested end-to-end, but shall anything slip through the cracks,
please feel free to report your errors here [https://github.com/lambda-my-aws/ecs_composex/issues/new/choose]

Provision other AWS resources your services need

So you have the definitions of your services and they are running on ECS.
But what about these other services that you need for your application to work? DBs, notifications, streams etc.
Are you going to run your MySQL server onto ECS too or are you going to want to use AWS RDS?
How are you going to define the IAM roles and policies for each service? Access Secrets? Configuration settings?

That is the second focus of ECS Compose-X: defining extra sections in the YAML document of your docker compose file, you
can define, for your databases, queues, secrets etc.

ECS Compose-X will parse every single one of these components. These components can exist on their own but what is of interest
is to allow the services to access these.

That is where ECS Compose-X will automatically take care of all of that for you.

For services like SQS or SNS, it will create the IAM policies and assign the permissions to your ECS Task Role so the service
gets access to these via IAM and STS. Credentials will be available through the metadata endpoint, which your SDK will pick
immediately.

For services such as RDS or ElasticCache, it will create the security groups ingress rules as needed, and when applicable,
will handle to generate secrets and expose these via ECS Secrets to your services.

How does it work?

To do so, ECS Compose-X will use the library called Troposphere [https://github.com/cloudtools/troposphere] and generate all the CloudFormation templates for it.
These extra resources that you need (RDS, SQS etc.), need to be defined. To keep things simple, you can defined them
in the same way you would do in AWS CloudFormation templates, add these resources to your compose definition.

Hint

x- is ignored by docker-compose when you run it. See Extensions fields [https://docs.docker.com/compose/compose-file/#extension-fields]

Note

x- and y- are natively defined in the YAML Specifications [https://yaml.org/spec/]

What does ECS Compose-X do differently? Long version

Where ECS Compose-X distinguishes itself from other tools is embedding security for each service individually,
so that developers only have to connect resources logically together in the same way they would use links between
microservices in their Docker Compose definition.

Each microservice needs to explicitly be declared as a consumer of a resource to get access to it,
otherwise it won’t be able to access the resource or other microservices.

This is achieved simply by using AWS IAM policies or security groups ingress, where applicable.

That simplified way to define access between services and resources helps with defining a shared-responsibility model
between application engineers and cloud engineers:

Application engineers must know what their application does and how services interface to each other and to external services.
This gives a sense of ownership to the developers of the infrastructure for the services,
via the definitions in the Docker Compose file that defines the application stack resources and services along with resources access and
permissions.

Why did I create ECS Compose-X?

Many companies I have worked with struggle with providing a true cloudy experience to their developers and enable them
to deploy AWS resources in a controlled fashion. And when they do give poweruser/administrator level of permissions to
developers, they usually have not been trained appropriately to understand fundamentals, such as least privileges and
you end up with services which all use the same AWS Access and Secret keys (yes, I witnessed it recently) and these
keys stay around for eternity (seen 1000+ days).

As an AWS Cloud Engineer, this scares the hell out of me and I feel like this is the first thing I need to fix.
As an automation engineer, I wanted a tool that allows developers to keep using Docker compose, as they very often do,
so they can’t run their workload on their laptops for quick testing and application testing.

But, “It works on my laptop” is something that in 2020 is simply unacceptable to companies deploying microservices.

Therefore, combining my love for least privileges and therefore IAM instance capability to implement it,
and the need for a tool going these extra miles, I decided to simply go for it.

A lot of you probably would prefer to use some other tools, such as Terraform.
But I all heartily believe that cloud engineers should use the IaC provided by the Cloud provider.

Third party integrations are coming, including for example the excellent AWS CFN registries where we already see partners
like DataDog provide the ability to create non AWS resources as part of the CFN stack and remove the need for custom made code.

Why am I not using AWS CDK?

ECS Compose-X was started before AWS CDK came out with any python support, and python was the language of choice for this
project.

Therefore, Troposphere was the obvious choice as the python library to use to build all the CFN templates.
The way Troposphere has been built is simple and clear, the name of the properties are the same as they are in
AWS CloudFormation, which gives a sense of standard to the user, allowing an experience as close to copy-paste as possible.

Troposphere [https://github.com/cloudtools/troposphere] has a very strong community and has wide set of AWS services support.
The community is active and other AWS Projects members are directly involved in the day-to-day life of the project.

In CDK, all the properties you have to set for a CFN resource have been renamed, Troposphere kept the same name definition
for the resources properties. To me, this is a very valuable thing, not to have to map CFN properties to a language specific
one.

Implementing least privileges at the heart of ECS Compose-X

One of the most important value add for a team of Cloud/DevOps engineers who have to look after an environment to use
ECS Compose-X is the persistent implementation of best practices:

	All microservices are using different sets of credentials

	All microservices are isolated by default and allowed traffic only when explicitly permitted

	All microservices must be defined as the consumer of a resource (DB, Queue, Table) to be granted access to it.

There have been to many instances of breaches on AWS due to a lack of strict IAM definitions and permissions. Automation
can solve that problem and with ECS Compose-X the effort is to constantly abide by the least privileges access principle.

Contributors

	
	John Preston
	
	Github [https://github.com/johnpreston]

	Keybase [https://keybase.io/johnpreston78] [image: JohnPreston78PGP]

Credits

This package would not have been possible without the amazing job done by the AWS CloudFormation team!
Thank you to all people working on their awesome libaries, to name a few:

	Troposphere [https://github.com/cloudtools/troposphere]

	placebo [https://pypi.org/project/placebo/]

	behave [https://pypi.org/project/behave/]

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Index

Ingress Logic

For TCP based access from microservices to resources such as RDS, EFS etc., we need to define security group ingress
accordingly.

There is a default limit of 60 rules per security group, therefore, when a database is global or needs access by a large
number of microservices, we need to change strategy. We also have a default limit of Security Groups per ENI, which by
default is 5. So we have to group as many services which have the same access pattern together in order to be within the
boundaries of the VPC Limits [https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html].

Hint

See VPC Limits [https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html] for default VPC settings. These can be changed, but ECS Compose-X assumes you are using the default
settings.

Case 1. x-resource has 40 or more services defined

First we are going to evaluate whether or not the service itself has more than 40 microservices listed.
If there are more than 40 services listed that require access, then we are going to create a new security group
which is going to be associated to the services and we will only have one rule to allow traffic from that new SG
to the SG of the resource.

Case 2. x-resource has less than 40 services defined

Opposite case from above, in which case we simply generate a list of ingress rules that will be added to the resource
security group.

Case 3. x-resource has is_global setting true

Some resources might be considered “global” to the microservices, meaning, all microservices should be allowed access to
the resource. This is not best practice but it effectively achieves the same as for use-case 1.

Only this time instead of adding another security group and passing it onto the

Exception to Case 1.

As mentioned before, there is a default limit of 5 SGs per ENIs. The difficulty is to merge Case 1 to that exception.
The example for this would be

	service needs access to a DB which has 40+ services defined

	service needs access to another DB which also has 40+ services defined

	service needs access to EFS which also has 40+ services.

	service needs access to ElasticCache which also has 40+ services

	service needs access to any endpoint in the VPC controlled by security group and uses 40+ services.

Agreed that this is an extreme use-case, but it doesn’t mean it is not impossible.

Note

I arbitrarily chose 40 as this is 2/3 of the maximum default, giving room for more.

Compatibility Matrix

	AWS ECS (and AWS Fargate) Features

	Docker Compose

	Docker AWS ECS Plugin

	AWS IAM Policies from AWS SAM

Deploy to your AWS Account

	Region

	Lambda Layer based Macro

	Docker based Macro

	us-east-1

	[image: LAYER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_US_EAST_1] [https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

	eu-west-1

	[image: LAYER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/layer-macro.yaml]

	[image: DOCKER_EU_WEST_1] [https://console.aws.amazon.com/cloudformation/home?region=eu-west-1#/stacks/new?stackName=compose-x-macro&templateURL=https://s3.eu-west-1.amazonaws.com/files.compose-x.io/macro/docker-macro.yaml]

Docker Compose syntax

	services

	volumes

	secrets

	networks

	logging

Services-level Extension Fields

	deploy

	x-scaling

	x-iam

	x-network

	x-logging

	x-xray

	x-codeguru-profiler

Compose-X syntax

	Common syntax for x-resources

	x-dynamodb

	x-rds

	x-docdb

	x-elastic_cache

	x-s3

	x-efs

	x-appmesh

	x-dns

	x-elbv2

	x-acm

	x-kinesis

	x-sqs

	x-sns

	x-events

	x-kms

	x-vpc

	x-cluster

	x-alarms

	spot_config

Docker ECS Plugin support

	Docker ECS Plugin support

services.x-alarms

This section describes the service level alarms that will automatically monitor the ECS Service

Service level x-alarms reference

services:
 app01:
 x-alarms:
 Predefined:
 HighCpuUsageAndMaxScaledOut:
 Topics: [] # Similar to other x-alarms settings
 Settings: {} # Input values override.

Predefined alarms

Common Settings

Note that the following properties can be set to override defaults.
It will only update the “Primary” alarm when alarms are composite.

	Setting

	Default

	DatapointsToAlarm [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarm-datapointstoalarm]

	10

	EvaluationPeriods [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-evaluationperiods]

	5

	Period [https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-alarms-period]

	60

Attention

Define some scaling range to allow scaling out
The alarms below will only be active if there are scaling rules defined.

HighCpuUsageAndMaxScaledOut

	Setting name

	Default Value

	Primary?

	Comment

	CPUUtilization

	75

	Y

	Percentage, float

	RunningTaskCount

	MAX()

	N

	Count, int.
Default goes to max value of

x-scaling.Range

This rule will trigger an alert when the CPUUtilization of a given service will go over the threshold and the tasks
count is equal to the max scaling capacity (or otherwise overriden value).

Example at 50% CPU usage and override to 4 tasks.

- Name: HighCpuUsageAndMaxScaledOut
 Settings:
 CPUUtilization: 50 # In percent
 RunningTaskCount: 4 # Number of tasks to evaluate against.

HighRamUsageAndMaxScaledOut

	Setting name

	Default Value

	Primary?

	Comment

	MemoryUtilization

	75

	Y

	Percentage, float

	RunningTaskCount

	MAX()

	N

	Count, int.
Default goes to max value of

x-scaling.Range

This rule will trigger an alert when the CPUUtilization of a given service will go over the threshold and the tasks
count is equal to the max scaling capacity (or otherwise overriden value).

Example at 50% CPU usage and override to 4 tasks.

- Name: HighRamUsageAndMaxScaledOut
 Settings:
 MemoryUtilization: 50 # In percent
 RunningTaskCount: 4 # Number of tasks to evaluate against.

A little bit of philosophy behind alarms

I love alarms, but one should only have alarms that do something relevant to the business criticality impact.
Alerting for the sake of alerting might actually cause you more work due. Equally, rules with too aggressive thresholds
will more often than not end up in false positives.

For example, CPU High usage alarms are useless if they do not either trigger an activity or response, such as autoscaling.
You are paying for the whole 100% of your CPU and if you are not on a burstable instance, you want to use as much as possible of it
to make the value worth. Now, high CPU usage on burstable instances is a big deal and you want to do something to avoid
throttling.

So as much as alarms are valuable, you should always try to have ones that will action a corrective fix, automated wherever
possible, and if not possible, alert people so risks get mitigated.

 _images/cloudformation-launch-stack.png
Launch Stack

nav.xhtml

 Table of Contents

 		
 Welcome to ECS-Compose-X’s documentation!

 		
 ECS Compose-X

 		
 Requirements

 		
 Installation

 		
 ECS Compose-X as an AWS CloudFormation Macro

 		
 Contributing

 		
 AWS ECS (and AWS Fargate) Features

 		
 Container Definition

 		
 Task Definition

 		
 Service Definition

 		
 Cluster definition

 		
 Docker Compose

 		
 services

 		
 deploy

 		
 volumes

 		
 network

 		
 Docker AWS ECS Plugin

 		
 AWS IAM Policies from AWS SAM

 		
 Example

 		
 services

 		
 volumes

 		
 Understand Local volumes vs shared volumes vs persistent volumes

 		
 Implementation in the AWS + Docker ECS Plugin

 		
 Implementation in ECS Compose-X

 		
 Define a volume for the task only

 		
 Define a shared volume between tasks

 		
 Define a shared volume using AWS EFS

 		
 secrets

 		
 Syntax

 		
 Name

 		
 LinksTo

 		
 JsonKeys

 		
 Examples

 		
 networks

 		
 logging

 		
 Supported drivers

 		
 awslogs

 		
 deploy

 		
 resources

 		
 replicas

 		
 labels

 		
 x-scaling

 		
 Range

 		
 TargetScaling

 		
 CpuTarget / RamTarget

 		
 ScaleInCooldown / ScaleOutCooldown

 		
 DisableScaleIn

 		
 x-iam

 		
 PermissionsBoundary

 		
 Policies

 		
 ManagedPolicies

 		
 x-network

 		
 UseCloudmap

 		
 Ingress definition

 		
 Syntax reference

 		
 Map VPC subnets to docker-compose networks

 		
 x-logging

 		
 RetentionInDays

 		
 Examples

 		
 x-xray

 		
 Syntax reference

 		
 Example

 		
 IAM permissions

 		
 x-codeguru-profiler

 		
 Syntax reference / Examples

 		
 Code Example

 		
 Common syntax for x-resources

 		
 Properties

 		
 Lookup

 		
 Tags

 		
 RoleArn

 		
 Settings

 		
 EnvNames

 		
 Subnets

 		
 Services

 		
 x-dynamodb

 		
 Properties

 		
 Settings

 		
 Lookup

 		
 Services

 		
 x-rds

 		
 Syntax

 		
 Properties

 		
 Using properties

 		
 MacroParameters

 		
 PermissionsBoundary

 		
 RdsFeatures

 		
 Services

 		
 Access types

 		
 Settings

 		
 Lookup

 		
 Defaults

 		
 Credentials

 		
 Examples

 		
 x-docdb

 		
 Syntax

 		
 Properties

 		
 MacroParameters

 		
 Instances

 		
 DBClusterParameterGroup

 		
 Services

 		
 Access types

 		
 Settings

 		
 Lookup

 		
 Credentials

 		
 Examples

 		
 x-elastic_cache

 		
 Properties

 		
 MacroParameters

 		
 ParameterGroup

 		
 Settings

 		
 Services

 		
 Lookup

 		
 Examples

 		
 x-s3

 		
 Create or use existing S3 buckets to use for your applications

 		
 Properties

 		
 MacroParameters

 		
 Services

 		
 Lookup

 		
 IAM Permissions

 		
 Examples

 		
 x-efs

 		
 Syntax reference

 		
 Properties

 		
 MacroParameters

 		
 EnforceIamAuth

 		
 Settings

 		
 Subnets

 		
 Lookup

 		
 Use

 		
 Examples

 		
 Filesystem, Access Point and services access

 		
 Access point per “container” within the task definition

 		
 x-appmesh

 		
 Syntax

 		
 Properties

 		
 MeshName

 		
 MeshOwner

 		
 EgressPolicy

 		
 Settings

 		
 nodes

 		
 routers

 		
 services

 		
 Examples

 		
 AWS AppMesh & AWS Cloud Map for services mesh & discovery

 		
 Nodes

 		
 Routers

 		
 Services

 		
 The other things ECS ComposeX takes care of for you

 		
 x-dns

 		
 Syntax

 		
 Examples

 		
 x-elbv2

 		
 Syntax

 		
 Properties

 		
 MacroParameters

 		
 Ingress

 		
 Other attribute shortcuts

 		
 Services

 		
 name

 		
 protocol

 		
 port

 		
 healthcheck

 		
 Listeners

 		
 Target Groups

 		
 name

 		
 access

 		
 AuthenticateCognitoConfig

 		
 AuthenticateOidcConfig

 		
 Examples

 		
 x-acm

 		
 Syntax

 		
 Properties

 		
 MacroParameters

 		
 DomainNames

 		
 HostedZoneId

 		
 Services

 		
 Example

 		
 x-kinesis

 		
 Syntax reference

 		
 Properties

 		
 MacroParameters

 		
 Settings

 		
 EnvNames

 		
 Services

 		
 Examples

 		
 IAM permissions

 		
 x-sqs

 		
 Define your AWS SQS Queues and service scaling based on messages queue depth

 		
 Syntax

 		
 Properties

 		
 Services

 		
 Lookup

 		
 Scaling

 		
 Special Features

 		
 Settings

 		
 Examples

 		
 x-sns

 		
 Syntax

 		
 Properties

 		
 Lookup

 		
 Examples

 		
 x-events

 		
 Properties

 		
 MacroParameters

 		
 Settings

 		
 Services

 		
 name

 		
 TaskCount

 		
 DeleteDefaultService

 		
 x-kms

 		
 Syntax

 		
 Properties

 		
 Settings

 		
 Alias

 		
 Examples

 		
 Services

 		
 IAM Permissions

 		
 x-vpc

 		
 Define a new VPC for your services or use an existing one

 		
 Syntax Reference

 		
 Lookup

 		
 Use

 		
 Default VPC Network design

 		
 x-cluster

 		
 Properties

 		
 Lookup

 		
 Use

 		
 x-alarms

 		
 Properties

 		
 MacroParameters

 		
 CompositeExpression

 		
 Services

 		
 Topics

 		
 TopicArn

 		
 x-sns

 		
 NotifyOn

 		
 Examples

 		
 spot_config

 		
 Define settings in the configs section

 		
 Docker ECS Plugin support

 		
 x-aws-cluster

 		
 x-aws-pull_credentials

 		
 x-aws-autoscaling

 		
 x-aws-policies

 		
 x-aws-role

 		
 x-aws-logs_retention

 		
 x-aws-min_percent & x-aws-max_percent

 		
 History

 		
 0.14.0 (2021-03-23)

 		
 New features

 		
 Fixes

 		
 Improvements

 		
 0.13.0 (2021-03-10)

 		
 New Features

 		
 Fixes

 		
 Improvements

 		
 0.12.0 (2021-01-31)

 		
 New features

 		
 Fixes

 		
 Improvements

 		
 Special changes

 		
 0.11.0 (2021-01-14)

 		
 New features

 		
 Improvements

 		
 Fixes

 		
 0.10.0 (2020-12-13)

 		
 New features

 		
 Improvements

 		
 Fixes

 		
 Other updates and corrections

 		
 0.9.0 (2020-11-26)

 		
 New features

 		
 Fixes

 		
 Syntax changes from previous version

 		
 0.8.0 (2020-10-09)

 		
 New features:

 		
 Closed reported issues:

 		
 0.7.0 (2020-08-12)

 		
 0.6.0 (2020-08-03)

 		
 0.5.3 (2020-07-30)

 		
 0.5.2 (2020-07-30)

 		
 0.5.1 (2020-07-28)

 		
 0.5.0 (2020-07-27)

 		
 New features

 		
 0.4.0 (2020-07-20)

 		
 0.3.0 (2020-06-21)

 		
 0.2.3 (2020-04-16)

 		
 New features

 		
 0.2.2 (2020-04-10)

 		
 0.2.1 (2020-05-03)

 		
 New features

 		
 0.1.3 (2020-04-13)

 		
 Issues closed

 		
 0.1.2 (2020-04-04)

 		
 Issues closed

 		
 0.1.1 (2020-04-02)

 		
 0.1.0 (2020-03-24)

 		
 Extras

 		
 Plug & Play to existing resources with auto discovery

 		
 Docker ECS-Plugin x-aws-keys support

 		
 AWS AppMesh integration

 		
 Services autoscaling integration

 		
 Fargate CPU/RAM auto configuration

 		
 Multiple services, one microservice

 		
 Philosophy

 		
 Trying to implement DevOps starting with developers

 		
 Community focused

 		
 Ensure things work

 		
 Provision other AWS resources your services need

 		
 How does it work?

 		
 What does ECS Compose-X do differently? Long version

 		
 Why did I create ECS Compose-X?

 		
 Why am I not using AWS CDK?

 		
 Implementing least privileges at the heart of ECS Compose-X

 		
 Contributors

 		
 Credits

_static/minus.png

_static/plus.png

_static/file.png

